DOI: 10.25881/BPNMSC.2020.32.74.012

Авторы

Кузнецова Н.Б.1, Буштырева И.О.2, Дыбова В.С.1, Баринова В.В.1, Дмитриева М.П.1

1 ФГБОУ ВО Ростовский государственный медицинский университет г. Ростов-на-Дону

2 ООО «Клиника профессора Буштыревой», Ростов-на-Дону

Аннотация

Преждевременным разрывом плодных оболочек называется нарушение целости оболочек плода и излитие околоплодных вод до начала родовой деятельности независимо от срока беременности. Частота данной патологии составляет около 2–3% среди всех беременностей, 30–50% среди преждевременных родов. В структуре преждевременных родов частота преждевременного разрыва плодных оболочек составляет 30–50%.

Беременность и роды раньше срока, осложненные преждевременным разрывом плодных оболочек, увеличивают частоту материнских (хориоамнионит, отслойка плаценты) и неонатальных осложнений (внутриутробная инфекция, некротизирующий энтероколит, внутрижелудочковое кровоизлияние) по сравнению с преждевременными родами в аналогичные сроки, но без преждевременного разрыва плодных оболочек. Это позволяет все чаще считаться с мнением, что преждевременные роды с преждевременным разрывом плодных оболочек и без преждевременного разрыва плодных оболочек следует рассматривать как отдельные клинические группы.

Ключевые слова: беременность, преждевременный разрыв плодных оболочек, преждевременные роды.

Список литературы

1. Кузьмин В.Н. Перинатальные исходы при преждевременном разрыве плодных оболочек // Лечащий врач. — 2018. — №3. — С. 34–38. [Kuzmin VN. Perinatal’nye iskhody pri prezhdevremennom razryve plodnykh obolochek. Practitioner. 2018;(3):34–38. (In Russ).]

2. Шадрина А.С., Плиева Я.З., Кушлинский Д.Н., и др. Классификация, регуляция активности, генетический полиморфизм матриксных металлопротеиназ в норме и при патологии // Альманах клинической медицины. — 2017. — Т.45. — №4. — С. 266–279. [Shadrina AS, Plieva YZ, Kushlinskiy DN, et al. Classification, regulation of activity, and genetic polymorphism of matrix metalloproteinases in health and disease. Almanac of Clinical Medicine. 2017;45(4):266–279. (In Russ).] doi: 10.18786/2072-0505-2017-45-4-266-279.

3. Ardissone AN, de la Cruz DM, Davis-Richardson AG, et al. Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS One. 2014; 9(3):e90784. doi: 10.1371/journal.pone.0090784.

4. Athayde N, Edwin SS, Romero R, et al. A role for matrix metalloproteinase-9 in spontaneous rupture of the fetal membranes. Am J Obstet Gynecol. 1998;179(5): 1248–1253. doi: 10.1016/s0002-9378(98)70141-3.

5. Brown RG, Marchesi JR, Lee YS, et al. Vaginal dysbiosis increases risk of preterm fetal membrane rupture, neonatal sepsis and is exacerbated by erythromycin. BMC Med. 2018;16(1):9. doi: 10.1186/s12916-017-0999-x.

6. Bryant-Greenwood GD. The extracellular matrix of the human fetal membranes: structure and function. Placenta. 1998;19(1):1–11. doi: 10.1016/s0143-4004 (98 )90092-3.

7. Chandiramani M, Bennett PR, Brown R, et al. Vaginal microbiome-pregnant host interactions determine a significant proportion of preterm labour. Fetal Matern Med Rev. 2014;25(1):73–78. doi: 10.1017/s0965539514000059.

8. DiGiulio DB, Romero R, Kusanovic JP, et al. Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm pre-labor rupture of membranes. Am J Reprod Immunol. 2010;64(1):38–57. doi: 10.1111/j.1600-0897.2010.00830.x.

9. Dutta EH, Behnia F, Boldogh I, et al. Oxidative stress damage-associated molecular signaling pathways differentiate spontaneous preterm birth and preterm premature rupture of the membranes. Mol Hum Reprod. 2016;22(2):143–157. doi: 10.1093/molehr/gav074.

10. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007; 35(4):495–516. doi: 10.1080/01926230701320337.

11. Faramarzi S, Kayisli UA, Kayisli O, et al. Decidual cell expressed tissue factor promotes endometrial hemostasis while mediating abruption associated preterm birth. ARSci. 2013;1(3):44–50. doi: 10.4236/arsci.2013.13007.

12. Flores-Pliego A, Espejel-Nuñez A, Castillo-Castrejon M, et al. Matrix Mmetalloproteinase-3 (MMP-3) is an endogenous activator of the MMP-9 secreted by placental leukocytes: implication in human labor. PLoS One. 2015;10(12):e0145366. doi: 10.1371/journal.pone.0145366.

13. Fortner KB, Grotegut CA, Ransom CE, et al. Bacteria localization and chorion thinning among preterm premature rupture of membranes. PLoS One. 2014;9(1):e83338. doi: 10.1371/journal.pone.0083338.

14. Fortunato SJ, Menon R, Lombardi SJ. Stromelysins in placental membranes and amniotic fluid with premature rupture of membranes. Obstet Gynecol. 1999;94 (3):435–440. doi: 10.1016/s0029-7844(99)00336-1.

15. George RB, Kalich J, Yonish B, Murtha AP. Apoptosis in the chorion of fetal membranes in preterm premature rupture of membranes. Am J Perinatol. 2008;25(1):29–32. doi: 10.1055/s-2007-1004828.

16. Gervasi MT, Romero R, Bracalente G, et al. Viral invasion of the amniotic cavity (VIAC) in the midtrimester of pregnancy. J Matern Fetal Neonatal Med. 2012;25(10):2002–2013. doi: 10.3109/14767058.2012.683899.

17. Harger JH, Hsing AW, Tuomala RE, et al. Risk factors for preterm premature rupture of fetal membranes: a multicenter case-control study. Am J Obstet Gynecol. 1990;163(1 Pt 1):130–137. doi: 10.1016/s0002-9378(11)90686-3.

18. Hermanns-Lê T, Piérard GE. Collagen fibril arabesques in connective tissue disorders. Am J Clin Dermatol. 2006;7(5):323–326. doi: 10.2165/00128071-200607050-00006.

19. Joyce EM, Moore JJ, Sacks MS. Biomechanics of the fetal membrane prior to mechanical failure: review and implications. Eur J Obstet Gynecol Reprod Biol. 2009; 144 Suppl 1:S121–127. doi: 10.1016/j.ejogrb.2009.02.014. 20. Kacerovsky M, Musilova I, Jacobsson B, et al. Cervical fluid IL-6 and IL-8 levels in pregnancies complicated by preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2015;28(2):134–140. doi: 10.3109/14767058.2014.908179.

21. Kasper DC, Mechtler TP, Böhm J, et al. In utero exposure to Ureaplasma spp. is associated with increased rate of bronchopulmonary dysplasia and intraventricular hemorrhage in preterm infants. J Perinat Med. 2011;39(3):331–336. doi: 10.1515/JPM.2011.022.

22. Kumar D, Moore RM, Mercer BM, et al. The physiology of fetal membrane weakening and rupture: Insights gained from the determination of physical properties revisited. Placenta. 2016;42:59–73. doi: 10.1016/j.placenta.2016.03.015.

23. Lykke JA, Dideriksen KL, Lidegaard O, Langhoff-Roos J. First-trimester vaginal bleeding and complications later in pregnancy. Obstet Gynecol. 2010;115(5):935–944. doi: 10.1097/AOG.0b013e3181da8d38.

24. Maymon E, Romero R, Pacora P, et al. Evidence for the participation of interstitial collagenase (matrix metalloproteinase 1) in preterm premature rupture of membranes. Am J Obstet Gynecol. 2000;183(4):914–920. doi: 10.1067/mob.2000.108879.

25. Maymon E, Romero R, Pacora P, et al. Matrilysin (matrix metalloproteinase 7) in parturition, premature rupture of membranes, and intrauterine infection. Am J Obstet Gynecol. 2000;182(6):1545–1553. doi: 10.1067/mob.2000.107652.

26. Maymon E, Romero R, Pacora P, et al. Evidence of in vivo differential bioavailability of the active forms of matrix metalloproteinases 9 and 2 in parturition, spontaneous rupture of membranes, and intra-amniotic infection. Am J Obstet Gynecol. 2000;183(4):887–894. doi: 10.1067/mob.2000.108878.

27. Musilova I, Andrys C, Drahosova M, et al. Amniotic fluid prostaglandin E2 in pregnancies complicated by preterm prelabor rupture of the membranes. J Matern Fetal Neonatal Med. 2016;29(18):2915–2923. doi: 10.3109/14767058.2015.1112372.

28. Musilova I, Andrys C, Drahosova M, et al. Cervical fluid interleukin 6 and intra-amniotic complications of preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2018;31(7):827–836. doi: 10.1080/14767058.2017.1297792.

29. Musilova I, Andrys C, Drahosova M, et al. Intraamniotic inflammation and umbilical cord blood interleukin-6 concentrations in pregnancies complicated by preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2017;30(8):900–910. doi: 10.1080/14767058.2016.1197900.

30. Musilova I, Kacerovsky M, Stepan M, et al. Maternal serum C-reactive protein concentration and intra-amniotic inflammation in women with preterm prelabor rupture of membranes. PLoS One. 2017;12(8):e0182731. doi: 10.1371/journal.pone.0182731.

31. Negara KS, Suwiyoga K, Pemayun TG, et al. The role of caspase-3, apoptosis-inducing factor, and B-cell lymphoma-2 expressions in term premature rupture of membrane. Rev Bras Ginecol Obstet. 2018;40(12):733–739. doi: 10.1055/s-0038-1675611.

32. Oh KJ, Lee SE, Jung H, et al. Detection of ureaplasmas by the polymerase chain reaction in the amniotic fluid of patients with cervical insufficiency. J Perinat Med. 2010;38(3):261–268. doi: 10.1515/JPM.2010.040.

33. Parry S, Strauss JF 3rd. Premature rupture of the fetal membranes. N Engl J Med. 1998;338(10):663–670. doi: 10.1056/NEJM199803053381006.

34. Puthiyachirakkal M, Lemerand K, Kumar D, et al. Thrombin weakens the amnion extracellular matrix (ECM) directly rather than through protease activated receptors. Placenta. 2013;34(10):924–931. doi: 10.1016/j.placenta.2013.07.064.

35. Romero R, Chaiworapongsa T, Espinoza J, et al. Fetal plasma MMP-9 concentrations are elevated in preterm premature rupture of the membranes. Am J Obstet Gynecol. 2002;187(5):1125–1130. doi: 10.1067/mob.2002.127312.

36. Romero R, Maymon E, Pacora P, et al. Further observations on the fetal inflammatory response syndrome: a potential homeostatic role for the soluble receptors of tumor necrosis factor alpha. Am J Obstet Gynecol. 2000;183(5):1070–1077. doi: 10.1067/mob.2000.108885.

37. Romero R, Miranda J, Chaemsaithong P, et al. Sterile and microbial-associated intra-amniotic inflammation in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2015;28(12):1394–1409. doi: 10.3109/14767058.2014.958463.

38. Saglam A, Ozgur C, Derwig I, et al. The role of apoptosis in preterm premature rupture of the human fetal membranes. Arch Gynecol Obstet. 2013;288(3):501–505. doi: 10.1007/s00404-013-2774-3.

39. Skogstrand K, Hougaard DM, Schendel DE, et al. Association of preterm birth with sustained postnatal inflammatory response. Obstet Gynecol. 2008;111(5): 1118–1128. doi: 10.1097/AOG.0b013e31817057fb.

40. Sukhikh GT, Kan NE, Tyutyunnik VL, et al. The role of extracellular inducer of matrix metalloproteinases in premature rupture of membranes. J Matern Fetal Neonatal Med. 2016;29(4):656–659. doi: 10.3109/14767058.2015.1015416.

41. Tchirikov M, Schlabritz-Loutsevitch N, Maher J, et al. Mid-trimester preterm premature rupture of membranes (PPROM): etiology, diagnosis, classification, international recommendations of treatment options and outcome. J Perinat Med. 2018;46(5):465–488. doi: 10.1515/jpm-2017-0027.

42. Vadillo-Ortega F, Estrada-Gutiérrez G. Role of matrix metalloproteinases in preterm labour. BJOG. 2005;112 Suppl 1:19–22. doi: 10.1111/j.1471-0528.2005.
00579.x.

43. Velemínský M, Tosner J. Relationship of vaginal microflora to PROM, pPROM and the risk of early-onset neonatal sepsis. Neuro Endocrinol Lett. 2008;29(2): 205–221.

44. Verbruggen SW, Oyen ML, Phillips AT, Nowlan NC. Function and failure of the fetal membrane: modelling the mechanics of the chorion and amnion. PLoS One. 2017;12(3):e0171588. doi: 10.1371/journal.pone.0171588.

45. Wall PD, Pressman EK, Woods JR Jr. Preterm premature rupture of the membranes and antioxidants: the free radical connection. J Perinat Med. 2002;30(6): 447–457. doi: 10.1515/JPM.2002.071.

46. Wang XJ, Li L, Cui SH. [Role of collagen III, CTGF and TNF-alpha in premature rupture of human fetal membranes. (In Chinese).] Sichuan Da Xue Xue Bao Yi Xue Ban. 2009;40(4):658–675.

47. Weiss A, Goldman S, Shalev E. The matrix metalloproteinases (MMPS) in the decidua and fetal membranes. Front Biosci. 2007;12:649–659. doi: 10.2741/2089.

48. Williams MA, Mittendorf R, Lieberman E, Monson RR. Adverse infant outcomes associated with first-trimester vaginal bleeding. Obstet Gynecol. 1991;78(1):14–18.

49. Yu H, Wang X, Gao H, et al. Perinatal outcomes of pregnancies complicated by preterm premature rupture of the membranes before 34 weeks of gestation in a tertiary center in China: a retrospective review. Biosci Trends. 2015;9(1):35–41. doi: 10.5582/bst.2014.01058.

50. Zhu J, He M, Ma C, et al. Expression and clinical significance of NOD-like receptor protein 3 (NLRP3) and caspase-1 in fetal membrane and placental tissues of patients with premature rupture of membrane. Med Sci Monit. 2018;24:1560–1566. doi: 10.12659/msm.906157.