DOI: 10.25881/BPNMSC.2019.74.65.020

Authors

Shevchenko Yu.L.1, Zaichuk R.2, Borshchev G.G.1, Zemlyanov A.V.1, Ulbashev D.S.1

1 Pirogov National Medical and Surgical Center, Clinic of Thoracic and Cardiovascular Surgery St. George’s, Moscow

2 Rush University Medical Center, Chicago, IL, USA

Abstract

Qualitative and quantitative control of the intraoperative graft evaluation in coronary artery bypass graft (CABG) surgery can provide additional data and prevent the development of complications. The main types of measurement of blood flow — laser and TTFM. The measured parameters, their characteristics and the necessary threshold values for assessing the effectiveness of coronary artery bypass grafting are given. TTFM is safe and effective method that provides important intraoperative information on the condition and functioning of each individual graft.

Keywords: coronary surgery; Quality control; Transit time flow measurement.

References

1. Ancalmo NB. Minimally invasive coronary artery surgery: really minimal?. The Annals of Thoracic Surgery. 1997;64:928-929.

2. Alekyan BG, Buziashvili YUI, Vlasov GP. Endovaskulyarnaya hirurgiya pri lechenii bol’nyh IBS s mnozhestvennymi porazheniyami koronarnyh arterij. Grudnaya i serdechno-sosudistaya hirurgiya. 1996;6:230. (In Russ).

3. Cameron AA, Green GE, Thornton JJ. nternal thoracic artery grafts: 20-year clinical follow-up. American College of Cardiology. 1995;25:188–92.

4. Tatoulis J, Buxton BF, Fuller JA The right internal thoracic artery: the forgotten conduit-5,766 patients and 991 angiograms. The Annals of Thoracic Surgery. 2011; 92:9–15.

5. Ybarra LF, Ribeiro HB, Pozetti AH. Long-term followup of drug eluting versus bare metal stents in the treatment of saphenous vein graft lesions. Catheterization and Cardiovascular Interventions; 2013;82(7):856–63.

6. Marco JD, Barner HB, Kaiser GC. Operative flow measurements and coronary bypass graft patency. The Journal of Thoracic and Cardiovascular Surgery. 1976; 71(4):545-547.

7. NICE. The Veri Q system for assessing graft flow during coronary artery bypass graft surgery. Medical technologies guidance. 2011:1-25.

8. Windecker S, Kolh P, Alfonso F, Collet JP, Cremer J, Falk V, Filippatos G, Hamm C, Head S. ESC/EACTS myocardial revascularization Guidelines. European Heart Journal. 2014;35:3235-3241.

9. Kozlov VI, Sokolov VG. Issledovanie kolebanij krovotoka v sisteme mikrocirkulyacii. 1998;8-13.(In Russ).

10. Kozlov VI. Gistofiziologiya sistemy mikrocirkulyacii. Regionarnoe krovoobrashchenie i mikrocirkulyaciya. 2003;3:79–85.(In Russ).

11. Polenov SA. Osnovy mikrocirkulyacii. Regionarnoe krovoobrashchenie i mikrocirkulyaciya. 2008;1:5-19.(In Russ).

12. Krupatkin AI, Sidorov VV. Lazernaya dopplerovskaya floumetriya mikrocirkulyacii krovi. 2005;256.(In Russ).

13. Sanaz A, Gomes A, David P. Relationship of Intraoperative Transit Time Flowmetry Findings to Angiographic Graft Patency at Follow-Up. The Annals of Thoracic Surgery. 2016; 101:2001-2003.

14. Di Giammarco G, Pano M, Cirmeni S, Pelini P, Vitolla G, Di Mauro M. Predictive value of intraoperative transit-time flow measurement for short-term graft patency in coronary surgery. The Journal of Thoracic and Cardiovascular Surgery. 2006;132:468–74.

15. D’Ancona G, Karamanoukian H, Ricci M, Schmid S, Bergsland J, Salerno T. Graft revision after transit time flow measurements in off-pump coronary artery bypass grafting. European Journal of Cardio-Thoracic Surgery. 2000;17:287–93.

16. Honda K, Okamura Y, Nishimura Y. Graft flow assessment using a transit time flow meter in fractional flow reserve-guided coronary artery bypass surgery. The Journal of Thoracic and Cardiovascular Surgery. 2015;149:1622–1628.

17. Handa T, Orihashi K, Nishimori H, Fukutomi T, Yamamoto M, Kondo N. Maximal blood flow acceleration analysis in the early diastolic phase for in situ internal thoracic artery bypass grafts: a new transit-time flow measurement predictor of graft failure following coronary artery bypass grafting.Interactive CardioVascular and Thoracic Surgery. 2015;20:449-457.

18. Jokinen JJ, Werkkala K, Vainikka T, Peräkylä T, Simpanen J, Ihlberg L. Clinical value of intra-operative transit-time flow measurement for coronary artery bypass grafting: a prospective angiography-controlled study. European Journal of Cardio-Thoracic Surgery. 2011;39:918–923.

19. Poteev MA, YAkubov RA. Intraoperacionnyj menedzhment pri koronarnom shuntirovanii: floumetriya kak sposob kontrolya kachestva. Sovremennaya medicina zakam’ya. 2017;4(17): 13-17.(In Russ).

20. Lehnert P, Moller CH, Damgaard S, Gerds TA, Steinbruchel DA. Transit-time flow measurement as a predictor of coronary bypass graft failure at one year angiographic follow-up. Journal of Cardiac Surgery. 2015;30:47–52.

21. Une D, Deb S, Chikazawa G, Kommaraju K, Tsuneyoshi H, Karkhanis R. Cut-off values for transit time flowmetry: are the revision criteria appropriate? Journal of Cardiac Surgery. 2013;28:3–7.

22. Jokinen JJ, Werkkala K, Vainikka T, Perakyla T, Simpanen J, Ihlberg L. Clinical value of intra-operative transit-time flow measurement for coronary artery bypass grafting: a prospective angiography-controlled study. European Journal of Cardio-Thoracic Surgery. 2011;39:918.

23. Uehara M, Muraki S, Takagi N, Yanase Y, Tabuchi M, Tachibana K. Evaluation of gastroepiploic arterial grafts to right coronary artery using transit-time flow measurement. European Journal of Cardio-Thoracic Surgery. 2015;47:459–463.

24. Herman C, Sullivan JA, Buth K. Intraoperative graft flow measurements during coronary artery bypass surgery predict in-hospital outcomes. Interactive CardioVascular and Thoracic Surgery. 2008;7:582–585.

25. Gao G, Zheng Z, Pi Y, Lu B, Lu J, Hu S. Aspirin plus clopidogrel therapy increases early venous graft patency after coronary artery bypass surgery a single-center, randomized, controlled trial . Journal of the American College of Cardiology. 2010;56: 1639–43.

26. Leacche M, Balaguer JM, Byrne JG. Intraoperative grafts assessment . Seminars in Thoracic and Cardiovascular Surgery. 2009;21:207-212.

27. Geha AS, Baue AE. Early and late results of coronary revascularization with saphenous vein and internal mammary. The American Journal of Surgery. 1979;137:456 – 463.

28. Singh SK, Desai ND, Chikazawa G, Tsuneyoshi H, Vincent J, Zagorski BM. The Graft Imaging to Improve Patency (GRIIP) clinical trial results. The Journal of Thoracic and Cardiovascular Surgery. 2010;139:294–301.

29. Tokuda Y, Song MH, Ueda Y, Usui A, Akita T. Predicting early coronary artery bypass graft failure by intraoperative transit time flow measurement. The Annals of Thoracic Surgery. 2007;84:1928–33.

30. Tokuda Y, Song MH, Oshima H, Usui A, Ueda Y. Predicting midterm coronary artery bypass graft failure by intraoperative transit time flow measurement. The Annals of Thoracic Surgery. 2008;86:532–536.

31. Kolozsvari R, Galajda Z, Ungvari T, Szabo G, Racz I, Szerafin T. Various clinical scenarios leading to development of the string sign of the internal thoracic artery after coronary bypass surgery: the role of competitive flow, a case series. Journal of Cardiothoracic Surgery. 2012;7:12.

32. Balacumaraswami L, Taggart DP. Intraoperative imaging techniques to assess coronary artery bypass graft patency. The Annals of Thoracic Surgery. 2007;83:2251–2257.

For citation

Shevchenko Yu.L., Zaichuk R., Borshchev G.G., Zemlyanov A.V., Ulbashev D.S. Transit time flowmetry for intraoperative bypass graft flow measurement. Bulletin of Pirogov National Medical & Surgical Center. 2019;14(3):98-103. (In Russ.) https://doi.org/10.25881/BPNMSC.2019.74.65.020