DOI: 10.25881/BPNMSC.2020.61.32.023

Authors

Zemlyanoj A.B.1, 2, Afinogenova A.G.3, Matveev S.A.1

1 Pirogov National Medical and Surgical Center, Moscow

2 Clinic of the Ministry of Internal Affairs of Russia, Moscow

3 Research Institute of Epidemiology and Microbiology named after Pasteur, St. Petersburgг

Abstract

Wound antiseptics have undergone a renaissance due to the introduction of highly effective antimicrobial agents for treating wounds and the spread of multiresistant microorganisms. There is an obvious need to formulate strict indications for the use of these drugs. An infected or critically colonized wound requires antiseptic treatment. In addition, in the case of the spread of infection, systemic antibiotic therapy is necessary. The proactive use of the WAR scale (Wounds-at-Risk Score scale for assessing the risk of infection of a wound in points) makes it possible to evaluate the risk of infection from the resulting score and, therefore, the advisability of prescribing antiseptics. The content of this updated consensus recommendation continues to boil down mainly to a discussion of the properties of octenidine dihydrochloride (OCT), polyhexanide and iodophors.

Keywords: аntiseptic wounds, wound infection risk scale (WAR), antiseptics, medical preparations, medical devices, octenidine, polyhexanide, hypochlorite, iodophors, taurolidine, silver ions, silver sulfadiazine, dyes, mercury-containing substances, hydrogen peroxide.

References

1. Hirsch T, Koerber A, Jacobsen F, et al. Evaluation of toxic side effects of clinically used skin antiseptics in vitro. J Surg Res. 2018;131(11):1279–1284. Doi: 10.1016/j.jss.2009.04.029.

2. Poole K. Efflux pumps as antimicrobial resistance mechanisms. Ann Med. 2007;39(3):162–176. Doi: 10.1080/07853890701195262.

3. Costa SS. Multidrug efflux pumps in Staphylococcus aureus: an update. Open Microbiol J. 2013;7:59–71. Doi: 10.2174/1874285801307010059.

4. Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev. 2003;27(2-3):341–353. Doi: 10.1016/S0168-6445(03)00047-0.

5. Hetem DJ, Bonten MJ. Clinical relevance of mupirocin resistance in Staphylococcus aureus. J Hosp Infect. 2013;85(4):249–256. Doi: 10.1016/j.jhin.2013.09.006.

6. Then RL, Kohl I, Burdeska A. Frequency and transferability of trimethoprim and sulfonamide resistance in methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis. J Chemother. 1992;4(2):67–71. Doi: 10.1080/1120009x.1992.11739142.

7. Heuer H, Smalla K. Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months. Environm Microbiol. 2007;9(3):657–666. Doi: 10.1111/j.1462-2920.2006.01185.x.

8. Kopmann C, Jechalke S, Rosendahl I, et al. Abundance and transferability of antibiotic resistance as related to the fate of sulfadiazine in maize rhizosphere and bulk soil. FEMS Microbiol Ecol. 2013;83(1):125–134. Doi: 10.1111/j.1574-6941.2012.01458.x.

9. Mayer KH. Review of epidemic aminoglycoside resistance worldwide. Am J Med. 1986;80(6B):56–64. Doi: 10.1016/0002-9343(86)90480-8.

10. Cookson BD. The emergence of mupirocin resistance: a challenge to infection control and antibiotic prescribing practice. J Antimicrob Chemother. 1998;41(1):11–18. Doi: 10.1093/jac/41.1.11.

11. Upton A, Lang S, Heffernan H. Mupirocin and Staphylococcus aureus: a recent paradigm of emerging antibiotic resistance. J Antimicrob Chemother. 2003;51(3):613–617. Doi: 10.1093/jac/dkg127.

12. Simor AE, Stuart TL, Louie L, et al. Mupiro-cin-resistant, methicillin-resistant Staphylococcus aureus strains in Canadian Hospitals. Antimicrob Agents Chemother. 2007;51(11):3880–3886. Doi: 10.1128/AAC.00846-07.

13. Deutsche Gesellschaft für Wundheilung und Wundbehandlung. Lokaltherapie chronischer Wunden bei Patienten mit den Risiken periphere arterielle Verschlusskrankheit, Diabetes mellitus, chronisch venöse Insuffizienz. S3 Leitlinie Reg. No. 091-001. 2012.

14. Acton C, Barrett S, Beldon P, et al. Best practice statement: the use of topical antiseptic/ antimicrobial agents in wound management. 2nd ed.

15. World Health Organization. Prevention and management of wound infection: guidance from WHO’s Department of Violence and Injury Prevention and Disability and the Department of Essential Health Technologies. 2008.

16. Kramer A, Assadian O, Below H, et al. Wound antiseptics today — an overview. In: Willy C, editor. Antiseptics in surgery — update 2013. Berlin: Lindqvist; 2013. pp. 85–111.

17. Schlüter B, Konig W. Microbial pathogenicity and host defense mechanisms: crucial parameters of posttraumatic infections. Thorac Cardiovasc Surg. 1990:38(6):339–347. Doi: 10.1055/s-2007-1014046.

18. Thomson PD. Immunology, microbiology, and the recalcitrant wound. Ostomy Wound Manage. 2000;46(suppl 1A):77S–82S.

19. Roth B, Neuenschwander R, Brill F, et al. Effect of antiseptic irrigation on infection rates of traumatic soft tissue wounds: a longitudinal cohort study. J Wound Care. 2017;26(3):1–6. Doi: 10.12968/jowc.2017.26.3.79.

20. White RJ, Cutting KF. Critical colonization — the concept under scrutiny. Ostomy Wound Manage. 2006;52(11):50–56.

21. Eisenbeiss W, Siemers F, Amtsberg G, et al. Prospective, double-blinded, randomised controlled trial assessing the effect of an Octenidine-based hydrogel on bacterial colonisation and epithelialization of skin graft wounds in burn patients. Int J Burns Trauma. 2012;2(2):71–79.

22. Dissemond J, Assadian O, Gerber V, et al. Classification of wounds at risk and their antimicrobial treatment with polyhexanide: a practice-orientated expert recommendation. Skin Pharmacol Physiol. 2011;24(5):245–255. Doi: 10.1159/000327210.

23. Pitten FA, Werner HP, Kramer A. A standardized test to assess the impact of different organic challenges on the antimicrobial activity of antiseptics. J Hosp Inf. 2003;55(2):108–115. Doi: 10.1016/s0195-6701(03)00260-3.

24. Schedler K, Assadian O, Brautferger U, et al. Proposed phase 2/step 2 in-vitro test on basis of EN 14561 for standardised testing of the wound antiseptics PVP-iodine, chlorhexidine digluconate, polihexanide and octenidine dihydrochloride. BMC Infect Dis. 2017;17(1):143. Doi: 10.1186/s12879-017-2220-4.

25. Hansmann F, Kramer A, Ohgke H, et al. [Polyhexamethylbiguanid (PHMB) as preoperative antiseptic for cataract surgery. (In German).] Ophthalmologe. 2004;101(4):377–383. Doi: 10.1007/s00347-003-0933-9.

26. Hansmann F, Kramer A, Ohgke H, et al. [Lavasept as an alternative to PVP-iodine as a preoperative antiseptic in ophthalmic surgery. Randomized, controlled, prospective double-blind trial. (In German).] Ophthalmologe. 2005;102(11):1043–1050. Doi: 10.1007/s00347-004-1120-3.

27. Hoerauf H, Holz FG, Kramer A, et al. [Statement of the German Ophthalmological Society, the Retina Society and the Professional Association of German Ophthalmologists: endophthalmitis prophylaxis intravitreal operative medications input (IVOM) (July 2013). (In German).] Klin Monatsbl Augenheilkd. 2013;230(11):1157–1161. Doi: 10.1055/s-0033-1351015.

28. Müller G, Kramer A. Biocompatibility index of antiseptic agents by parallel assessment of antimicrobial activity and cellular cytotoxicity. J Antimicr Chemother. 2008;61(6):1281–1287. Doi: 10.1093/jac/dkn125.

29. Crabtree TD, Pelletier SJ, Pruett TL. Surgical antisepsis. In: Block SS, editor. Disinfection, sterilization, and preservation. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2001. Pp. 919–934.

30. Wiegand C, Abel M, Ruth P, et al. HaCaT keratinocytes in co-culture with Staphylococcus aureus can be protected from bacterial damage by polihexanide. Wound Repair Regen. 2009;17(5):730–738. Doi: 10.1111/j.1524-475X.2009.00536.x.

31. Lineaweaver W, Howard R, Soucy D, et al. Topical antimicrobial toxicity. Arch Surg. 1985;120(3):267–270. Doi: 10.1001/archsurg.1985.01390270007001.

32. Müller G, Langer J, Siebert J, Kramer A. residual antimicrobial effect of chlorhexidine digluconate and octenidine dihydrochloride on reconstructed human epidermis. Skin Pharmacol Physiol. 2014;27(1):1–8. Doi: 10.1159/000350172.

33. Cantoni O, Brandi G, Salvaggio L, et al. Molecular mechanisms of hydrogen peroxide cytotoxicity. Ann Ist Super Sanita. 1989;5(1):69–73.

34. Wilson JR, Mills JG, Prather ID, et al. A toxicity index of skin and wound cleansers used on in vitro fibroblasts and keratinocytes. Adv Skin Wound Care. 2005;18(7):37–38. Doi: 10.1097/00129334-200509000-00011.

35. Kramer A, Hetmanek R, Weuffen W, et al. Wasserstoffperoxid. In: Kramer A, Weuffen W, Krasilnikow AP, et al., editors. Antibakterielle, antifungielle und antivirale antiseptik — ausgewählte wirkstoffe. Handbuch der Antiseptik. Stuttgart: Fischer; 1987. pp. 447–491. Doi:

36. Brudzynksi K. Effect of hydrogen peroxide on antibacterial activities of Canadian honeys. Can J Microbiol. 2006;52(12):1228–1237. Doi: 10.1139/w06-086.

For citation

Zemlyanoj A.B., Afinogenova A.G., Matveev S.A. The use of antiseptics in the treatment of wounds with a high risk of infection. Bulletin of Pirogov National Medical & Surgical Center. 2020;2(15):129-137. (In Russ.) https://doi.org/10.25881/BPNMSC.2020.61.32.023