Authors
Kornilovsky I.M.
Pirogov National Medical and Surgical Center, Moscow
Abstract
Backgraund. Surgical treatment methods for active ROP generally achieve relatively good anatomical results, but visual function can be poor, especially in advanced stages, despite technological advances in vitreoretinal surgery. However, there are still no standards for the choice of methods and timing of ROP surgery depending on the stage and type of disease progression.
Aim – to conduct a retrospective analysis of the results of vitreoretinal surgery in the active period of retinopathy of prematurity, followed by an assessment of the functional results in the cicatricial phase of the disease.
Materials and methods. This study was conducted in two stages. The first stage consisted of a retrospective analysis of the results of vitreoretinal surgery performed at the Kaluga branch of the S. Fyodorov Eye Microsurgery Federal State Institution from 2012 to 2024 in 89 children (89 eyes) with ROP in the active phase of the disease. The second stage included an assessment of the functional outcomes in the same 89 children (89 eyes) in the cicatricial phase of ROP using standard ophthalmological examination data (visometry, refractometry, perimetry, tonometry, ophthalmoscopy, B-scan).
Results. The retrospective study included a group of premature infants with a gestational age of 25-32 weeks and a birth weight of 700-1500 grams who underwent vitreoretinal surgery of varying extents depending on the severity of the pathological process. The most successful outcomes were observed in surgeries performed at stages 3 and 4a of active ROP, whereas the effectiveness of surgical treatment was significantly reduced at later stages (stages 4b and especially 5).
Analysis of data from the cicatricial period of ROP revealed significant differences in functional outcomes depending on the stage of the disease and the type of surgical intervention performed. In children over four years of age, significant visual acuity deficits were observed, especially in the groups operated on at later stages of ROP (stages 4b and 5).
Conclusions. The results of the study demonstrate that the final anatomical and functional outcome in each specific case depends on the surgical treatment method used during the active period of ROP to stabilize the pathological process, at what stage of the disease the treatment was carried out, the general condition of the child, the scope and timing of the surgical treatment, as well as the post-conceptual age at the time of its implementation.
Keywords: vitreoretinal surgery, retinopathy of prematurity, active period of retinopathy of prematurity, cicatricial retinopathy of prematurity, functional results.
References
1. Costagliola C., Balestrieri P., Fioretti F., Frunzio S., Rinaldi M., Scibelli G., Sebastiani A., Rinaldi E. ArF 193 nm excimer laser corneal surgery as a possible risk factor in cataractogenesis. Exp Eye Res 1994 Apr; 58(4): 453-7, DOI: 10.1006/exer.1994.1038.
2. Nakamura K, Bissen-Miyajima H, Arai H, Toda I, Hori Y, Shimmura S, Tsubota K. Iatrogenic cataract after laser-assisted in situ keratomileusis. Am J Ophthalmol. 1999 Oct; 128(4):507-9. DOI: https://doi.org/10.1016/S0002-9394(99)00193-2.
3. Krueger RR, Seiler T, Gruchman T, Mrochen M, Berlin MS. Stress wave amplitudes during laser surgery of the cornea. Ophthalmology. 2001 Jun; 108(6):1070-4., DOI: https://doi.org/10.1016/S0161-6420(01)00570-X .
4. Wachtlin J, Blasig IE, Schrunder S, Langenbeck K, Hoffmann F. PRK and LASIK--their potential risk of cataractogenesis: lipid peroxidation changes in the aqueous humor and crystalline lens of rabbits. Cornea 2000 Jan;19 (1):75-79., DOI: 10.1097/00003226-200001000-00015.
5. Mansour AM., Ghabra M. Cataractogenesis after Repeat Laser in situ Keratomileusis. Case Report Ophthalmol. 2012 May;3(2):262-5., DOI: 10.1159/000342134.
6. Manning S. Cataract surgery outcomes in corneal refractive surgery eyes: Study from the European Registry of Quality Outcomes for Cataract and Refractive Surgery. J Cataract Refract Surg. 2015 Nov; 41(11):2358-65., DOI:10.1016/j.jcrs.2015.04.034.
7. Yesilirmak N., Chhadva, P., Waren D., MSPH, Donaldson KE. Effect of Prior Refractive Surgery on Timing of Cataract Surgery. MS ASCRS ASOA Symposium & Congress 2015 Paper., DOI: 10.3928/1081597X-20160217-07.
8. Iijima K., Kamiya K., Shimizu K., Komatsu М. Demographics of patients having cataract surgery after laser in situ keratomileusis. J Cataract Refract Surg. 2015 Feb;41(2):334-8., DOI: 10.1016/j.jcrs.2014.05.045.
9. Yesilirmak N., Chhadva P., Diakonis VF., Waren DP., Yoo SH., Donaldson KE. The Effect of LASIK on Timing of Cataract Surgery. J Refract Surg. 2016 May 1; 32(5):306-310., DOI:10.3928/1081597X-20160217-07.
10. Kornilovskiy I. M. Faktory kataraktogeneza v lazernoy refraktsionnoy khirurgii rogovitsy. Oftal’mologiya. 2019;16(1S):112-117. https://doi.org/10.18008/1816-5095-2019-1S-112-117 (In Russ).
11. Kornilovskiy I. M. Novaya energosberegayushchaya gidrogemodinamicheskaya teoriya akkomodatsii // Refraktsionnaya khirurgiya i oftal’mologiya. 2010; T10 (3):11-16. (In Russ).
12. Kornilovskiy I. M. Novaya teoriya refraktogeneza i razvitiya miopii. Rossiyskiy oftal’mologichskiy zhurnal, 2025; 18(3):102-108. (In Russ). https://doi.org/10.21516/2072-0076-2025-18-3-102-109.
13. MacFarlane ER, Donaldson PJ and Grey AC (2024) UV light and the ocular lens: a review of exposure models and resulting biomolecular changes.Front. Ophthalmol. 4:1414483. doi: 10.3389/fopht.2024.1414483.
14. Kornilovsky I.M., Burtsev A.A. Theoretical and experimental substantiation of laser-induced crosslinking in photorefractive corneal surgery. Cataract and Refractive Surgery. 2015; 15 (1):20-25.(In Russ.)
15. Kornilovskiy I.M., Sultanova A.I., Burtsev A.A. Fotoprotektsiya riboflavinom s effektom krosslinkinga pri fotorefraktsionnoy ablyatsii rogovitsy. Vestnik oftal’mologii. 2016;132 (3):37 41. https://doi.org/10.17116/oftalma2016132337-41.(In Russ)
16. Корниловский И.М. Лазер-индуцированный кросслинкинг в модификации абляционной поверхности при фоторефракционной кератэктомии. Катарактальная и рефракционная хирургия». 2016; 16 (4): 29-35.(In Russ.)
17. Kornilovskiy I.M., Kasimov E.M., Sultanova A.I., Burtsev A.A. Laser-induced corneal cross-linking upon photorefractive ablation with riboflavin. Clin. Ophthalmol. 2016; 10: 587-592, DOI https://doi.org/10.2147/OPTH.S101632.
18. Kornilovskiy I.M., Kasimov E.M., Sultanova A.I., Burtsev A.A., Mirishova M.F. An experimental evaluation of photoprotection by riboflavin in the excimer laser refractive keratectomy. Res. J. Pharm. Biol. Chem. Sci. 2016; 7 (6): 188-194, ISSN: 0975-8585
19. Kornilovsky I.M. Photoprotection with the effect of laser-induced crosslinking during photorefractive ablation with riboflavin. Scientific and practical journal Point of view “East-West”. 2018; 1: 61-64. DOI: https//10.25276/2410-1257-2018-1-61-64.(In Russ)
20. Kornilovskiy I.M. Fotoprotektsiya s effektom lazer-indutsirovannogo krosslinkinga pri fotorefraktsionnoy ablyatsii s riboflavinom. Nauchno-prakticheskiy zhurnal Tochka zreniya “Vostok-Zapad”. 2018;1:61-64. DOI: https//10.25276/2410-1257-2018-1-61-64.(In Russ.)
21. Kornilovskiy I.M. Photorefractive Keratectomy with Protection from Ablation-Induced Secondary Radiation and Cross-linking Effect. EC Ophthalmology. 2019; 10 (70): 563-570. DOI https://doi.org/10.2147/OPTH.S101632.
22. Kornilovskiy I.M. Prophylactic and Therapeutic Laser-Induced Corneal Crosslinking. EC Ophthalmology, 2020; 11(12):74-82.
23. Kornilovskiy I.M. Ot standartnogo k uskorennomu i sverkhbystromu topograficheski oriyentirovannnomu profilakticheskom krosslinkingu v refraktsionnoy khirurgii rogovitsy. Vestnik Natsional’nogo Medio-khirurgicheskogo Tsentra im. N.I. Pirogova, 2023:53-58 Pirogovskiy oftal’mologicheskiy forum. DOI:10.25881/20728255_2023_18_4_S1_53. (In Russ.)
24. Kornilovskiy I.M. Sposob krosslinkinga rogovitsy. Patent RF № 2822101 s prioritetom ot 15.12. 2021.(In Russ.)


