Authors
Grekov D.N.1, 3, Kuzmenko A.A.1, Petrosyan T.V.1, Andreicev I.L.1, Titov K.S.1, 2, Yakomaskin V.N.1
1 Botkin Hospital, Moscow
2 RUDN University, Moscow
3 Russian Medical Academy of Continuous Professional Education, Moscow
Abstract
Gastric cancer treatment is one of the most complex and evolving fields in oncology and surgery. Although surgery remains the primary treatment option, global research indicates that a multimodal approach, including perioperative chemotherapy, significantly improves long-term outcomes for patients with locally advanced gastric cancer. However, the choice of the optimal surgical technique remains a matter of debate.
Modern trends in gastric cancer surgery emphasize the use of minimally invasive techniques. Studies suggest that minimally invasive surgery reduces surgical trauma, leading to less blood loss, fewer wound complications, faster postoperative recovery, and an earlier start of chemotherapy.
Laparoscopic surgery has already become the standard approach for early-stage gastric cancer. However, the role of robot-assisted techniques in gastric cancer treatment has yet to be fully defined.
This study aims to explore the advantages and limitations of robotic surgery in gastric cancer treatment as part of a multidisciplinary therapeutic strategy, based on a systematic review of global literature.
Keywords: gastric cancer, robot-assisted surgery, gastrectomy, gastric resection, chemotherapy.
References
1. Biondi A, et al. Does a minimum number of 16 retrieved nodes affect survival in curatively resected gastric cancer? European Journal of Surgical Oncology (EJSO). 2015; 41(6): 779-786. doi: 10.1016/j.ejso.2015.03.227.
2. Kitano S, et al. Laparoscopy-assisted billroth-I gastrectomy (LADG) for cancer: Our 10 years’ experience. Surgical Laparoscopy, Endoscopy & Percutaneous Techniques. 2002; 12(3): 204-207. doi: 10.1097/ 00129689-200206000-00021.
3. Xia X, et al. Objective evaluation of clinical outcomes of laparoscopy-assisted pylorus-preserving gastrectomy for middle-third early gastric cancer. BMC Cancer. 2019; 19(1). doi: 10.1186/s12885-019-5695-0.
4. Caruso S, et al. Laparoscopic and robot-assisted gastrectomy for gastric cancer: Current considerations. World Journal of Gastroenterology. 2016; 22(25): 5694. doi: 10.3748/wjg.v22.i25.5694.
5. Jung DH, et al. The learning curve associated with laparoscopic total gastrectomy. Gastric Cancer. 2014; 19(1): 264-272. doi: 10.1007/s10120-014-0447-y.
6. Özer İ, et al. Changing trends in gastric cancer surgery. Balkan Medical Journal. 2017; 34(1): 10-20. doi: 10.4274/balkanmedj.2015.1461.
7. Hashizume M, Sugimachi K. Robot-assisted gastric surgery. Surgical Clinics of North America. 2003; 83(6): 1429-1444. doi: 10.1016/s0039-6109 (03)00158-0.
8. van Boxel GI, Ruurda JP, van Hillegersberg R. Robotic-assisted gastrectomy for Gastric cancer: A European perspective. Gastric Cancer. 2019; 22(5): 909-919. doi: 10.1007/s10120-019-00979-z.
9. Baral S, et al. Robotic versus laparoscopic gastrectomy for Gastric cancer: A mega meta-analysis. Frontiers in Surgery., 2022; 9. doi: 10.3389/ fsurg.2022.895976.
10. Strong VE, et al. Robotic gastrectomy for gastric adenocarcinoma in the USA: Insights and oncologic outcomes in 220 patients. Annals of Surgical Oncology.2020; 28(2): 742-750. doi: 10.1245/s10434-020-08834-7.
11. Ma J, et al. Robotic versus laparoscopic gastrectomy for Gastric cancer: A systematic review and meta-analysis. World Journal of Surgical Oncology. 2020; 18(1). doi: 10.1186/s12957-020-02080-7.
12. Terashima M. The 140 years’ journey of Gastric cancer surgery: From the two hands of Billroth to the multiple hands of the robot. Annals of Gastroenterological Surgery. 2021; 5(3): 270-277. doi: 10.1002/ags3. 12442.
13. Yamashita K, et al. History and emerging trends in chemotherapy for Gastric cancer. Annals of Gastroenterological Surgery. 2021; 5(4): 446-456. doi: 10.1002/ags3.12439.
14. Marano L, et al. Robotic versus laparoscopic gastrectomy for Gastric cancer: An umbrella review of systematic reviews and meta-analyses. Updates in Surgery, 2021; 73(5): 1673-1689. doi: 10.1007/s13304-021-01059-7.
15. Rockall TA, Darzi A. Robot-assisted laparoscopic colorectal surgery. Surgical Clinics of North America. 2003; 83(6): 1463-1468. doi: 10.1016/ s0039-6109(03)00156-7.
16. Gutt CN, et al. Robot-assisted abdominal surgery. British Journal of Surgery. 2004; 91(11): 1390-1397. doi: 10.1002/bjs.4700.
17. Fedorov AV, Kriger AG, Berelavichus SV, Efanov MG, Gorin DS. Robotic-assisted abdominal surgery. Pirogov Russian Journal of Surgery. 2010; 1: 16-21. (In Russ.)
18. Park JY, et al. Surgical stress after robot-assisted distal gastrectomy and its economic implications. British Journal of Surgery. 2012; 99(11): 1554-1561. doi: 10.1002/bjs.8887.
19. Ojima T, et al. Short-term outcomes of robotic gastrectomy vs laparoscopic gastrectomy for patients with Gastric Cancer. JAMA Surgery. 2021; 156(10): 954. doi: 10.1001/jamasurg.2021.3182.
20. Lu J, et al. Robotic versus laparoscopic distal gastrectomy for resectable gastric cancer: A randomized phase 2 trial. Nature Communications. 2024; 15(1). doi: 10.1038/s41467-024-49013-6.
21. Liao G, et al. Comparative analysis of robotic gastrectomy and laparoscopic gastrectomy for gastric cancer in terms of their long-term oncological outcomes: A meta-analysis of 3410 gastric cancer patients. World Journal of Surgical Oncology. 2019; 17(1). doi: 10.1186/s12957-019-1628-2.
22. Loureiro P, et al. Laparoscopic versus robotic gastric cancer surgery: Short-term outcomes–systematic review and meta-analysis of 25,521 patients. Journal of Laparoendoscopic & Advanced Surgical Techniques. 2023; 33(8): 782-800. doi: 10.1089/lap.2023.0136.
23. Ma J, et al. Robotic versus laparoscopic gastrectomy for Gastric cancer: A systematic review and meta-analysis [Preprint]. 2020. doi: 10.21203/rs.3.rs-84003/v1.
24. Woo Y. Robotic gastrectomy as an oncologically sound alternative to laparoscopic resections for the treatment of early-stage gastric cancers. Archives of Surgery. 2011; 146(9): 1086. doi: 10.1001/archsurg.2011.114.
25. Song J, Hyung WJ. Reply to: 464-625: Re role of robotic gastrectomy using da vinci system compared with laparoscopic gastrectomy: Initial experience of 20 consecutive cases. Surgical Endoscopy. 2009; 24(1): 242-243. doi: 10.1007/s00464-009-0630-0.
26. Gu H, Li W, Zhou L. Application of hand-sewn esophagojejunostomy in laparoscopic total gastrectomy. World Journal of Surgical Oncology. 2024; 22(1). doi: 10.1186/s12957-024-03350-4.
27. Wei JP, et al. Comparing intracorporeal mechanical anastomosis vs. hand-sewn esophagojejunostomy after total laparoscopic gastrectomy for Esophagogastric Junction Cancer: A single-center study. World Journal of Surgical Oncology. 2023; 21(1). doi: 10.1186/s12957-023-02889-y.
28. Majewska K, et al. Comparison of postoperative outcomes of hand-sewn versus stapled Esophago-jejunal anastomosis during total gastrectomy for gastric cancer in 72 patients: A retrospective, single-center study in Poland. Medical Science Monitor. 2023; 29. doi: 10.12659/msm.938759.
29. Castro PM, et al. Hand-sewn versus stapler esophagogastric anastomosis after esophageal ressection: Sistematic Review and meta-analysis. ABCD. Arquivos Brasileiros de Cirurgia Digestiva (São Paulo). 2014; 27(3): 216-221. doi: 10.1590/s0102-67202014000300014.
30. Kawamura H, et al. Anastomotic complications after laparoscopic total gastrectomy with esophagojejunostomy constructed by Circular Stapler (orvilTM) versus Linear Stapler (overlap method). Surgical Endoscopy. 2017; 31(12): 5175-5182. doi: 10.1007/s00464-017-5584-z.
31. Yoshikawa K, et al. Usefulness of the Transoral anvil delivery system for esophagojejunostomy after laparoscopic total gastrectomy: A single-institution comparative study of Transoral Anvil Delivery System and the overlap method. Surgical Laparoscopy, Endoscopy & Percutaneous Techniques. 2018; 28(2). doi: 10.1097/sle.0000000000000495.
32. Sun D, et al. Comparison between linear stapler and circular stapler after laparoscopic-assisted distal gastrectomy in patients with gastric cancer. Frontiers in Surgery. 2022; 9. doi: 10.3389/fsurg.2022.858236.
33. Murakami K, et al. Linear or circular stapler? A propensity score-matched, multicenter analysis of intracorporeal esophagojejunostomy following totally laparoscopic total gastrectomy. Surgical Endoscopy. 2019; 34(12): 5265-5273. doi: 10.1007/s00464-019-07313-9.
34. Huang C, et al. A comparison of cervical delta-shaped anastomosis and circular stapled anastomosis after esophagectomy. World Journal of Surgical Oncology. 2017; 15(1). doi: 10.1186/s12957-017-1097-4.
35. Gong CS, Kim BS, Kim HS. Comparison of totally laparoscopic total gastrectomy using an endoscopic linear stapler with laparoscopic-assisted total gastrectomy using a circular stapler in patients with gastric cancer: A single-center experience’, World Journal of Gastroenterology. 2017; 23(48): 8553-8561. doi: 10.3748/wjg.v23.i48.8553.
36. Son T. Laparoscopic Gastric Cancer Surgery: Current Evidence and Future Perspectives. World Journal of Gastroenterology. 2016; 22(2): 727. doi: 10.3748/wjg.v22.i2.727.
37. Parisi A, et al. Minimally invasive surgery for gastric cancer: A comparison between robotic, laparoscopic and open surgery. World Journal of Gastroenterology. 2017; 23(13): 2376. doi: 10.3748/wjg.v23.i13.2376.
38. Okines A, et al. Gastric cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Annals of Oncology. 2010; 21: v50-v54. doi: 10.1093/annonc/mdq164.
39. Ajani JA, et al. Gastric cancer, version 3.2016, NCCN clinical practice guidelines in oncology. Journal of the National Comprehensive Cancer Network. 2016; 14(10): 1286-1312. doi: 10.6004/jnccn.2016.0137.
40. Noh SH, et al. Adjuvant Capecitabine Plus Oxaliplatin for gastric cancer after D2 gastrectomy (Classic): 5-year follow-up of an open-label, Randomised Phase 3 trial. The Lancet Oncology. 2014; 15(12): 1389–1396. doi: 10.1016/s1470-2045(14)70473-5.
41. Cunningham D, et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. New England Journal of Medicine. 2006; 355(1): 11-20. doi: 10.1056/nejmoa055531.
42. Ychou M, et al. Perioperative chemotherapy compared with surgery alone for resectable gastroesophageal adenocarcinoma: An FNCLCC and FFCD multicenter phase III trial. Journal of Clinical Oncology. 2011; 29(13): 1715-1721. doi: 10.1200/jco.2010.33.0597.
43. Yoshikawa T, et al. Induction of a pathological complete response by four courses of Neoadjuvant Chemotherapy for gastric cancer: Early results of the randomized phase II compass trial. Annals of Surgical Oncology. 2013; 21(1): 213-219. doi: 10.1245/s10434-013-3055-x.
44. Hashemzadeh S, et al. The effects of neoadjuvant chemotherapy on resectability of locally-advanced gastric adenocarcinoma: A clinical trial. International Journal of Surgery. 2014; 12(10): 1061-1069. doi: 10.1016/j.ijsu.2014.08.349.
45. Kang Y-K, et al. Neoadjuvant docetaxel, Oxaliplatin, and S-1 plus surgery and adjuvant S-1 for resectable advanced gastric cancer: Final survival outcomes of the Randomized Phase 3 Prodigy trial. Journal of Clinical Oncology, 2023; 41(16): 4067-4067. doi: 10.1200/jco.2023.41.16_suppl.4067.
46. Ji J, et al. Perioperative chemotherapy of Oxaliplatin combined with S-1 (SOX) versus postoperative chemotherapy of Sox or Oxaliplatin with Capecitabine (XELOX) in locally advanced gastric adenocarcinoma with D2 gastrectomy: A randomized phase III trial (resolve trial). Annals of Oncology. 2019; 30: v877. doi: 10.1093/annonc/mdz394.033.
47. Wu L, et al. Postoperative morbidity and mortality after neoadjuvant chemotherapy versus upfront surgery for locally advanced gastric cancer: A propensity score matching analysis. Cancer Management and Research, 2019; 11: 6011-6018. doi: 10.2147/cmar.s203880.
48. Hu S-B, et al. Pathological evaluation of Neoadjuvant Chemotherapy in Advanced gastric cancer. World Journal of Surgical Oncology. 2019; 17(1). doi: 10.1186/s12957-018-1534-z.
49. Al-Batran S-E, et al. Perioperative chemotherapy with docetaxel, Oxaliplatin, and Fluorouracil/leucovorin (FLOT) versus epirubicin, cisplatin, and fluorouracil or Capecitabine (ECF/ECX) for resectable gastric or gastroesophageal junction (GEJ) adenocarcinoma (flot4-aio): A multicenter, Randomized Phase 3 trial. Journal of Clinical Oncology. 2017; 35(15): 4004-4004. doi: 10.1200/jco.2017.35.15_suppl.4004.
50. Xu W, et al. Neoadjuvant chemotherapy versus direct surgery for locally advanced gastric cancer with Serosal Invasion (ct4nxm0): A propensity score-matched analysis. Frontiers in Oncology. 2021; 11. doi: 10.3389/fonc.2021.718556.
51. Li Ziyu, et al. Correlation of pathological complete response with survival after neoadjuvant chemotherapy in gastric or gastroesophageal junction cancer treated with radical surgery: A meta-analysis. PLOS ONE. 2018; 13(1). doi: 10.1371/journal.pone.0189294.