DOI: 10.25881/20728255_2025_20_2_123

Authors

Maksim O.V., Shevchenko A.A, Romashevskiy B.V., Demyanenko N.Yu.

S.M. Kirov Military medical academy, St. Petersburg

Abstract

Low-intensity chronic inflammation due to adiposopathy in visceral obesity is considered the basis for the formation of metabolic syndrome and an important component of the pathogenesis of leading non-infectious chronic diseases. The well-known anthropometric indicators of visceral obesity used in routine practice do not take into account the ectopic locations of fat depots and their contribution to the metabolic activity of adipose tissue. The search continues for universal integral indicators, including anthropometric, biochemical parameters, and the results of imaging studies reflecting early metabolic disorders in adipose tissue dysfunction. Early verification of metabolic changes associated with visceral obesity can significantly affect the prognosis of metabolic diseases and their complications.

Keywords: visceral obesity, metabolic syndrome, chronic low-intensity inflammation, diagnosis.

References

1. Kytikova OY, Antonyuk MV, Kantur TA, et al. Prevalence and biomarkers in metabolic syndrome. Obesity and metabolism. 2021; 18(3): 302-312. (In Russ.) doi: 10.14341/omet12704.

2. Druzhilov MA, Kuznetsova TY. Heterogeneity of obesity phenotypes in relation to cardiovascular risk. Cardiovascular therapy and prevention. 2019; 18(1): 161-167. (In Russ.) doi: 10.15829/1728-8800-2019-1-161-167.

3. Kouvari M, Panagiotakos DB, Yannakoulia M, et al. ATTICA Study Investigators. Transition from metabolically benign to metabolically unhealthy obesity and 10-year cardiovascular disease incidence: The ATTICA cohort study. Metabolism. 2019; 93: 18-24. doi: 10.1016/j.metabol.2019.01.003.

4. Galagudza MM, Borshchev YY, Ivanov SV. Abdominal visceral obesity as the basis for the formation of metabolic syndrome: the current state of the problem. University Therapeutic Journal. 2020; 2(1): 31-34. (In Russ.)

5. Xin J, Tingting Q, Li L, et al. Pathophysiology of obesity and its associated diseases. Acta Pharmaceutica Sinica. 2023; 13(6): 2403-2424. doi: 10.1016/j.apsb.2023.01.012.

6. Nejatizadeh A, Eftekhar E, Shekari M, et al. Cohort profile: Bandar Kong prospective study of chronic non-communicable diseases PLoS One. 2022; 17(5): 265-388. doi: 10.1371/JOURNAL.PONE.0265388.

7. Drapkina OM, Kim OT. Epigenetics of obesity. Cardiovascular therapy and prevention. 2020; 6: 94-98. (In Russ.) doi: 10.15829/1728-8800-2020-2632.

8. Romantsova TI, Sych YP. Immunometabolism and metaflammation in obesity. Obesity and metabolism. 2019; 16(4): 3-17. (In Russ.) doi: 10.14341/omet12218.

9. Balan AI; Halat VB, Scridon A. Oxidative Stress, Inflammation, and Mitochondrial Dysfunction: A Link between Obesity and Atrial Fibrillation. Antioxidants. 2024; 13: 117. doi: 10.3390/antiox13010117.

10. Becher T. Brown adipose tissue is associated with cardiometabolic health. Nat Med. 2021; 27: 58-65. doi: 10.1038/s41591-020-1126-7.

11. Lesnaya AS, Darenskaya MA, Semenova NV, et al. A new aspect of metabolic disorders in obesity: carbonyl stress. Siberian Scientific Medical Journal. 2023; 43(6): 24-33. (In Russ.) doi: 10.18699/SSMJ20230603.

12. Ahmad Z, Kahloan W, Rosen ED. Transcriptional control of metabolism by interferon regulatory factors. Nat Rev Endocrinol. 2024; 20: 573-587. doi: 10.1038/s41574-024-00990-0.

13. Dvoretsky LI. Obesity and infection. Another comorbidity? Obesity and metabolism. 2019; 16(2): 3-8. (In Russ.) doi: 10.14341/omet9745.

14. Ametov AS, Rubtsov YE, Salukhov VV, et al. Elimination of adipose tissue dysfunction as the main factor in reducing cardiometabolic risks in obesity. Therapy. 2019; 6(32): 66-74. (In Russ.) doi: 10.18565/therapy.

15. Aljafary MA, Al-Suhaimi EA. Adiponectin System (Rescue Hormone): The Missing Link between Metabolic and Cardiovascular Diseases. Pharmaceutics. 2022; 14: 14-30. doi: 10.3390/pharmaceutics14071430.

16. Luna-Ceron E, González-Gil AM. Current Insights on the Role of Irisin in Endothelial Dysfunction. Current Vascular Pharmacology. 2020; 20(3): 1-5. doi: 10.2174/1570161120666220510120220.

17. Zyubanova IV, Ryumshina NI, Mordovin VF, et al. Interrelations of the sizes of abdominal and paranephral fat depots with markers of metaflammation and kidney damage in patients with resistant arterial hypertension. Arterial hypertension. 2024; 30(2): 207-223. (In Russ.) doi: 10.18705/1607-419X-2024-2318.

18. Kytikova OY, Novgorodtseva TP, Denisenko YK, et al. Toll-like receptors in the pathophysiology of obesity. Obesity and Metabolism. 2020; 17(1): 56-63. (In Russ.) doi: 10.14341/omet10336.

19. Cabral-García GA, Cruz-Muñoz JR, Valdez-Morales EE, et al. Pharmacology of P2X Receptors and Their Possible Therapeutic Potential in Obesity and Diabetes. Pharmaceuticals. 2024; 17: 12-91. doi: 10.3390/ ph17101291.

20. Lavrenova EA, Drapkina OM. Insulin resistance in obesity: causes and consequences. Obesity and Metabolism. 2020; 17(1): 48-55. (In Russ.) doi: 10.14341/omet9759.

21. Mychka VB, Vertkin AL, Vardaev LI, et al. Expert consensus on an interdisciplinary approach to the management, diagnosis, and treatment of patients with metabolic syndrome. Cardiovascular therapy and prevention. 2013; 12(6): 41-82. (In Russ.)

22. Meisinger C, Döring A, Thorand B, et al. Body fat distribution and risk of type 2 diabetes in the general population: are there differences between men and women? The MONICA/ KORA Augsburg cohort study. Am J Clin Nutr. 2006; 84(3): 483-489. doi: 10.1093/ajcn/84.3.483.

23. Gruzdeva OV, Akbasheva OE, Borodkina DA, et al. The relationship of obesity and adipokine indices with the risk of type 2 diabetes mellitus one year after a myocardial infarction. Russian Journal of Cardiology. 2015; 4: 59-67. (In Russ.) doi: 10.15829/1560 4071-2015-4-59-67.

24. Ji M, Zhang S, An R. Effectiveness of A Body Shape Index (ABSI) in predicting chronic diseases and mortality: a systematic review and meta-analysis. Obes Rev. 2018; 19(5): 737-759. doi: 10.1111/obr.12666.

25. Oslopov VN, Bogoyavlenskaya OV. Body shape index – a new indicator of the risk of premature death. Kazan Medical Journal. 2015; 96(2): 253-256. (In Russ.) doi: 10.17750/KMJ2015-253.

26. Li G, Wu X, Wu W, et al. The feasibility of two anthropometric indices to identify metabolic syndrome, insulin resistance and inflammatory factors in obese and overweight adults. Nutrition. 2019; 57: 194-201. doi: 10.1016/j.nut.2018.05.004.

27. Ryu K, Suliman ME, Qureshi AR, et al. Central obesity, assessed by the conical shape index and body mass index, is associated with risk factors for cardiovascular diseases and mortality in patients with renal insufficiency. Front Nutr. 2023; 1(10): 1035-1343. doi: 10.3389/fnut.2023.1035343.

28. Thomas DM, Bredlau C. Relationships between body roundness with body fat and visceral adipose tissue emerging from a new geometrical model. Obesity (Silver Spring). 2013; 21: 2264-2271. doi: 10.1002/oby.20408.

29. Khorlampenko AA, Karetnikova VN, Kochergina AM, et al. Index of visceral obesity in patients with coronary artery disease, obesity and type 2 diabetes mellitus. Cardiovascular therapy and prevention. 2020; 3: 172-179. (In Russ.) doi: 10.15829/1728-8800-2020-2311.

30. Mikhailov AA, Gaiduk SV, Velibekov RT, et al. Interrelation of the neutrophil-leukocyte index, adipokines and pro-inflammatory cytokines in young and middle-aged obese people. Hospital medicine: science and practice. 2023; 6(2): 18-26. (In Russ.) doi: 10.34852/GM3CVKG. 2023.11.99.014.

31. Suslyaeva NM, Zavadovskaya VD, Shulga OS, et al. The algorithm of radiation examination of visceral obesity in patients with metabolic syndrome. Bulletin of Siberian medicine. 2012; 5. (In Russ.)

32. Brel NK, Kokov AN, Gruzdeva OV. Advantages and limitations of various diagnostic methods for visceral obesity. Obesity and Metabolism. 2018; 15(4): 3-8. (In Russ.) doi: 10.14341/OMET9510.

33. Kologrivova IV, Vinnitskaya IV, Koshelskaya OA, et al. Visceral obesity and cardiometabolic risk: features of hormonal and immune regulation. Obesity and metabolism. 2017; 14(3): 3-10. (In Russ.) doi: 10.14341/OMET201733-10.

34. Kokov AN, Brel NK, Masenko VL, et al. Quantitative assessment of visceral fat depot in patients with coronary artery disease using modern tomographic techniques. Complex problems of cardiovascular diseases. 2017; 3: 113-119. (In Russ.) doi: 10.17802/2306-1278-2017-6-3-113-119.

35. Iacobellis G. Epicardial adipose tissue in contemporary cardiology. Nat Rev Cardiol. 2022; 19: 593-606. doi: 10.1038/s41569-022-00679-9.

36. Kuznetsova TYu, Chumakova GA, Druzhilov MA, Veselovskaya NG. Сlinical application of quantitative echocardiographic assessment of epicardial fat tissue in obesity. Russ J Cardiol. 2017; 4(144): 81-87. (In Russ.) doi: 10.15829/1560-4071-2017-4-81-87.

37. Mahabadi AA, Lehmann N, Kälsch H, et al. Association of epicardial adipose tissue with progression of coronary artery calcification is more pronounced in the early phase of atherosclerosis: results from the Heinz Nixdorf recall study. JACC Cardiovasc Imaging. 2014; 7(9): 909-916. doi: 10.1016/j.jcmg.2014.07.002.

38. Shi KL, Qi L, Mao DB, et al. Impact of age on epicardial and pericoronary adipose tissue volume. Eur Rev Med Pharmacol Sci. 2015; 19(17): 3257-3265. doi: 10.1016/B978-1-4160-6645-3.00032-3.

39. Kaneva AM, Bojko ER. Lipid accumulation product or lap as an up-to-date clinical biochemical marker of human obesity. Health Risk Analysis. 2019; 2: 164-174. (In Russ.) doi: 10.21668/health.risk/2019.2.18.

40. Uchasova EG, Gruzdeva OV, Dyleva YA, Belik EV. The role of perivascular adipose tissue in the development of cardiovascular diseases. The importance of diagnosis for assessing the risk stratification of cardiovascular diseases. Terapevticheskii arkhiv. 2019; 4(91): 130-135. (In Russ.) doi: 10.26442/00403660.2019.04.000186.

41. Antonopoulos AS, Sanna F, Sabharwal N, et al. Detecting human coronary inflammation by imaging perivascular fat. Sci Transl Med. 2017; 9: eaal2658. doi: 10.1126/scitranslmed.aal2658.

42. Zairova AR, Rogoza AN, Dobrovolsky AB, et al. Arterial stiffness and “vascular aging” in relation to coagulological risk factors for the development of cardiovascular diseases, indicators of lipid and carbohydrate metabolism in the adult population of Tomsk according to the ESSE-RF study. Cardiological Bulletin. 2018; 13(1): 5-15. (In Russ.) doi: 10.17116/Cardiobulletin20181315-15.

43. Koshelskaya OA, Naryzhnaya NN, Kologrivova IV, et al. Correlation of epicardial adipocytes hypertrophy with adipokines, inflammation and glucose and lipid metabolism. Siberian Journal of Clinical and Experimental Medicine. 2023; 38(1): 64-74. (In Russ.) doi: 10.29001/2073-8552-2023-38-1-64-74.

44. Mustafina SV, Alferova VI, Rymar OD, et al. Adipocytokine levels and their associations with clinical and laboratory parameters in women aged 25-44 years with different metabolic phenotype. Endocrinology: news, opinions, training. 2023; 12(2): 23-35. (In Russ.) doi: 10.33029/2304-9529-2023-12-2-23-35.

45. Alferova VI, Mustafina SV. The role of adipokines in the formation of cardiometabolic disorders in humans. Atherosclerosis. 2023; 18(4): 388-394. (In Russ.) doi: 10.52727/ 2078-256X-2022-18-4-388-394.

46. Salukhov VV, Lopatin YaR, Minakov AA. Adipsin – summing up large-scale results: A review. Consilium Medicum. 2022; 24(5): 317-323. (In Russ.) doi: 10.26442/20751753.2022.5.201280.

47. Sabat R, Ouyang W, Wolk K. Therapeutic opportunities of the IL-22-IL-22R1 system. Nat Rev Drug Discov. 2014; 1(13): 21-38. doi: 10.1038/ nrd4176.

48. Park CS, Shastri N. The Role of T Cells in Obesity-Associated Inflammation and Metabolic Disease. Immune Netw. 2022; 22(1): 13. doi: 10.4110/ in.2022.22.e13.

For citation

Maksim O.V., Shevchenko A.A, Romashevskiy B.V., Demyanenko N.Yu. The possibilities of early diagnosis of metabolic disorders in obesity. Bulletin of Pirogov National Medical & Surgical Center. 2025;20(2):123-131. (In Russ.) https://doi.org/10.25881/20728255_2025_20_2_123