DOI: 10.25881/20728255_2023_18_4_32

Authors

Ahmetov N.R. 1, Samoylov A.N.1, 2, Usov V.A.2

1 The Republican Clinical Ophthalmological Hospital, Kazan

2 The Kazan State Medical University, Kazan

Abstract

Rationale. In most countries of the world, applanation tonometers remain popular, such as the Maklakov tonometer and the Goldman tonometer. When measuring ophthalmotonus, such tonometers receive IOP values indirectly through the cornea, which certainly introduces its own errors into the measurement results. The creation of methods for measuring IOP different from the currently existing ones is relevant.

Purpose: to create a new method for determining intraocular pressure without tonometry, based on the indicators of the individual profile of the cornea with its parameters, indices and autorefractometry data.

Materials and methods. Statistical analysis of 16 parameters of a corneotopograph (ALLEGRO Topolyzer Wavelight Topolyzer VARIO), data of an autorefractometer (TONOREF Nidek device) and data of tonometric intraocular pressure was carried out using a Maklakov tonometer (НГм2-«ОФТ-П») in 500 patients (1000 eyes). Among the sample population there were patients with both emmetropic refraction — 8 eyes (0.8%), and patients with refractive errors 992 eyes (99.2%), among them: 978 eyes (97.8%) had myopic refraction 14 (1.4%) eyes had isolated refraction with myopic astigmatism. 889 eyes (88.9%) combined myopic refraction with myopic astigmatism.

Results. Based on the analysis of corneootopographic parameters, autorefractometry values and tonometric IOP of 500 patients (1000 eyes), we have created a new method for determining intraocular pressure without tonometry, presented in the form of a mathematical model: Pt corneotopographic = 58,9 - 0,07 × SPH - 0,19 × CYL - 0,37 × log2(IVA) - 30 × CKI - 1,26 × Rmin

Keywords: corneotopography, cornea, determination of intraocular pressure, tonometry.

References

1. Samoylov AN, Samoylova PA, Ahmetov NR, Usov VA, Gainutdinova RF, Zakirova GZ. Methods for measuring intraocular pressure: disadvantages and advantages. Ophthalmology Reports. 2022; 15(3): 63-78. (In Russ.) doi: 10.17816/OV106140.

2. National Center for Biotechnology Information. Tonometry. Bader J., Zeppieri M., Havens S.J. StatPearls Publishing, 2023. [URL] Accessed 26.06.2023.

3. Antonov AA, Astahov YS, Bessmertny AM. Clinical guidelines. Glaucoma primary open-angle2020. [URL] Accessed 26.06.2023. (In Russ.)

4. Bubnova IA, Asatryan SV. Biomechanical properties of the cornea and tonometry measurements. Vestnik Oftal’mologii. 2019; 135(4): 27-32. (In Russ.) doi: 10.17116/oftalma201913504127.

5. Jóhannesson G, Hallberg P, Eklund A, Lindén C. Pascal, ICare and Goldmannapplanation tonometry--a comparative study. ActaOphthalmol. 2008; 86(6): 614-21. doi: 10.1111/j.1600-0420.2007.01112.x.

6. McCafferty S, Tetrault K, McColgin A, Chue W, Levine J, Muller M. Intraocular Pressure Measurement Accuracy and Repeatability of a Modified Goldmann Prism: Multicenter Randomized Clinical Trial. Am J Ophthalmol. 2018; 196: 145-153. doi: 10.1016/j.ajo.2018.08.051.

7. Fukuoka S, Aihara M, Iwase A, Araie M. Intraocular pressure in an ophthalmologically normal Japanese population. ActaOphthalmol. 2008; 86(4): 434-9. doi: 10.1111/j.1600-0420.2007.01068.x.

8. Shah S, Laiquzzaman M, Mantry S, Cunliffe I. Ocular response analyser to assess hysteresis and corneal resistance factor in low tension, open angle glaucoma and ocular hypertension. ClinExpOphthalmol. 2008; 36(6): 508-13. doi: 10.1111/j.1442-9071.2008.01828.x.

9. Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyser. J Cataract Refract Surg. 2005; 31(1): 156-162. doi: 10.1016/j.jcrs.2004.10.044.

10. Kynigopoulos M, Schlote T, Kotecha A, et al. Repeatability of intraocular pressure and corneal biomechanical properties measurements by the ocular response analyser. Klin Monbl Augenheilkd. 2008; 225(5): 357-360. doi: 10.1055/s-2008-1027256.

11. Bao F, Huang W, Zhu R, et al. Effectiveness of the Goldmann applanation tonometer, the dynamic contour tonometer, the ocular response analyzer and the Corvis ST in measuring intraocular pressure following FS-LASIK. Curr Eye Res. 2020; 45(2): 144-152. doi: 10.1080/02713683.2019.1660794.

12. Boszczyk A, Kasprzak H, Przeździecka-Dołyk J. Novel Method of Measuring Corneal Viscoelasticity Using the Corvis ST Tonometer. J Clin Med. 20224; 11(1): 61. doi: 10.3390/jcm11010261.

13. Jóźwik A, Kasprzak H, Kozakiewicz A. Corneal Buckling during Applanation and Its Effect on the Air Pressure Curve in Ocular Response Analyzer. Int J Environ Res Public Health. 2019; 16(15): 2742. doi: 10.3390/ ijerph16152742.

For citation

Ahmetov N.R. , Samoylov A.N., Usov V.A. The method for determining intraocular pressure according to corneotopographic indicators. Bulletin of Pirogov National Medical & Surgical Center. 2023;18(4):32-35. (In Russ.) https://doi.org/10.25881/20728255_2023_18_4_32