DOI: 10.25881/20728255_2023_18_4_4

Authors

Shevchenko Yu.L.1, Melkumyants A.M.2, Stoyko Yu.M.1, Yashkin M.N.1, Chernyago T.Yu.1, Gudymovich V.G.1

1 Pirogov National Medical and Surgical Center, Moscow

2 National Medical Research Center of Cardiology named after academician E.I.Chazov, Moscow

Abstract

Currently the study of endothelial function significantly expands our understanding of physiological and pathological processes occurring in the human body. Their range is very wide and covers not only such areas as angiology, cardiovascular pathology, phlebology, but also related areas — sepsisology, oncology, nephrology and others. The structural component of the cell, the glycocalyx, is still poorly understood. Primarily the main reason for it due to fragility glycocalyx. Attempts to study it microscopically are mainly indirect. Direct visualization of the glycocalyx using electron microscopy is extremely difficult. The article is devoted to the analysis of the features of studying the microscopic structure of the glycocalyx and its function. The first results of an electron microscopic viev of the glycocalyx of the endothelium of the venous wall in patients with varicose veins are presented, as well as a description of the methodology and features of this study for its visualization.

Keywords: endothelium, glycocalyx, endothelial dysfunction, cardiovascular diseases, varicose veins.

References

1. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980; 288 (5789): 373-376. doi: 10.1038/288373a0.

2. Furchgott RF. Role of endothelium in responses of vascular smooth muscle. Circulation research. 1983; 53(5): 557-573. doi: 10.1161/01.res.53.5. 557.

3. Smieško V, Kožík J, Doležel S. Role of endothelium in the control of arterial diameter by blood flow. Journal of Vascular Research. 1985; 22(5): 247-251.

4. Melkumyants AM, Balashov SA, Khayutin VM. Control of arterial lumen by shear stress on endothelium. Physiology. 1995; 10(5): 204-210. doi: 10.1093/cvr/23.9.741.

5. Ignarro LJ, Buga G, Wood KS, et al. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proceedings of the National Academy of Sciences. 1987; 84(24): 9265-9269. doi: 10.1073/pnas.84.24.9265.

6. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987; 327(6122): 524-526. doi: 10.1038/327524a0.

7. Verhamme P, Hoylaerts MF. The pivotal role of the endothelium in haemostasis and thrombosis. Acta Clinica Belgica. 2006; 61(5): 213-219. doi: 10.1179/acb.2006.036.

8. Cines DB, Pollak ES, Buck CA, Loscalzo J, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. The Journal of the American Society of Hematology. 1998; 91(10): 3527-3561.

9. Frejdlin IS, SHejkin YUA. Endotelial’nye kletki v kachestve mishenej i producentov citokinov. Medicinskaya immunologiya. 2001; 3(4): 499-514. (In Russ.)

10. Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annи Rev Biomed Eng. 2007; 9: 121-167. doi: 10.1146/annurev.bioeng.9.060906.151959.

11. Alphonsus CS, Rodseth RN. The endothelial glycocalyx: a review of the vascular barrier. Anesthesia. 2014; 69(7): 777-784. doi: 10.1111/anae. 12661.

12. van den Berg BM, Vink H, Spaan JA. The endothelial glycocalyx protects against myocardial edema. Circulation research. 2003; 92(6): 592-594. doi: 10.1161/01.RES.0000065917.53950.75.

13. Collins SR, Blank RS, Deatherage LS, et al. The endothelial glycocalyx: Emerging concepts in pulmonary edema and acute lung injury. Anesthesia and Analgesia. 2013; 117(3): 664. doi: 10.1213/ANE.0b013e3182975b85.

14. Mel’kumyanc AM. O roli endotelial’nogo glikokaliksa v mekhanogennoj regulyacii soprotivleniya arterial’nyh sosudov. Uspekhi fiziologicheskih nauk. 2012; 43(4): 45-58. (In Russ.)

15. Mel’kumyanc AM, Balashov SA, Gonchar IV. Vliyanie povrezhdeniya endotelial’nogo glikokaliksa na sposobnost’ arterij regulirovat’ svoj prosvet pri izmeneniyah skorosti krovotoka. Rossijskij fiziologicheskij zhurnal im. I.M. Sechenova. 2017; 103(12): 1370-1376. (In Russ.)

16. Weinbaum S, Cancel LM, Fu BM, Tarbell JM. The glycocalyx and its role in vascular physiology and vascular related diseases. Cardiovascular engineering and technology. 2021; 12: 37-71. doi: 10.1007/s13239-020-00485-9.

17. Danielli JF. Capillary permeability and odema in the perfused frog. The Journal of physiology. 1940: 98(1): 109. doi: 10.1113/jphysiol.1940.sp003837.

18. Chambers R, Zweifach BW. Functional activity of the blood capillary bed, with special reference to visceral tissue. Annals of the New York Academy of Sciences. 1946; 46(8); 683-695. doi: 10.1111/j.1749-6632.1946.tb31697.x.

19. Copley FL, Staple PH. Hemorheological studies on the plasmatic zone in the microcirculation of the cheek pouch of Chinese and Syrian hamsters. Biorheology. 1962; 1(1); 3-14.

20. Bennett HS. Morphological aspects of extracellular polysaccharides. Journal of histochemistry & cytochemistry. 1963; 11(1): 14-23.

21. Luft JH. Fine structure of capillary and endocapillary layer as revealed by ruthenium red. Federation proceedings. 1966; 25(6); 1773-1783.

22. Klitzman B, Duling BR. Microvascular hematocrit and red cell flow in resting and contracting striated muscle. American Journal of Physiology-Heart and Circulatory Physiology. 1979; 237(4): 481-490. doi: 10.1152/ajpheart.1979.237.4.H481.

23. Pries AR, Secomb TW, Gaehtgens P, et al. Blood flow in microvascular network — experiments and simulation. Microcirculation. 1990; 67(4); 826-834. (In English). doi: 10.1161/01.res.67.4.826.

24. Drenckhahn D, Ness W. The endothelial contractile cytoskeleton. Vascular endothelium: physiology, pathology and therapeutic opportunities. 1977; 1-15.

25. Barker A, Konopatskaya O, Neal CR, et al. Observation and characterisation of the glycocalyx of viable human endothelial cells using confocal laser scanning microscopy. Physical chemistry chemical physics. 2004; 6(5); 1006-1011. doi: 10.1039/B312189E.

26. Megens RT, Reitsma S, Schiffers PH, et al. Two-photon microscopy of vital murine elastic and muscular arteries. Combined structural and functional imaging with subcellular resolution. Journal of vascular research. 2007; 44(2): 87-98. doi: 10.1159/000098259.

27. Wang S, Okano M, Yoshida Y. Ultrastructure of endothelial cells and lipid deposition on the flow dividers of brachiocephalic and left subclavian arterial bifurcations of the rabbit aorta. J. Japanise Atheroscler. Soc. 1991; 19: 1089-1100.

28. Woolf N. The arterial endothelium. Pathology of atherosclerosis. 1982; 25-45. doi: 10.3390/ijms23063346.

29. Villalba N, Baby S, Yuan SY. The endothelial glycocalyx as a double-edged sword in microvascular homeostasis and pathogenesis. Frontiers in Cell and Developmental Biology. 2021; 9: 711003. doi: 10.3389/fcell.2021. 711003.

30. Suzuki A, Tomita H, Okada H. Form follows function: The endothelial glycocalyx. Translational Research. 2022; 247: 158-167. doi: 10.1016/j.trsl. 2022.03.014.

31. Moore KH, Murphy HA, George EM. The glycocalyx: a central regulator of vascular function. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2021; 320(4): 508-518. doi: 10.1152/ajpregu.00340.2020.

32. Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annu. Rev. Biomed. 2007; 9: 121-167. doi: 10.1146/annurev.bioeng.9.060906.151959.

33. Squire JM, Chew M, Nneji G, et al. Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering? Journal of structural biology. 2001; 136(3): 239-255. doi: 10.1006/jsbi.2002.4441.

34. Abassi Z, Armaly Z, Heyman SN. Glycocalyx degradation in ischemia-reperfusion injury. The American Journal of Pathology. 2020; 190(4): 752-767. doi: 10.1016/j.ajpath.2019.08.019.

35. Goligorsky MS, Sun D. Glycocalyx in endotoxemia and sepsis. The American journal of pathology. 2020; 190(4): 791-798. doi: 10.1016/j.ajpath.2019.06.017.

36. Popova TG, Millis B, Bradburne C, et al. Acceleration of epithelial cell syndecan-1 shedding by anthrax hemolytic virulence factors. BMC microbiology. 2006: 6(1): 1-16. doi: 10.1186/1471-2180-6-8.

37. Holzmann MS, Winkler MS, Strunden MS, et al. Syndecan-1 as a biomarker for sepsis survival after major abdominal surgery. Biomarkers in medicine. 2018; 12(2): 119-127. doi: 10.2217/bmm-2017-0231.

38. SHevchenko YUL, Stoiko YUM, Gudymovich VG. Disfunkciya endoteliya i endokarda pri srdechno-sosudistyh zabolevaniyah (patogenez, diagnostika, profilaktika i lechenie). M.: Nacional’nyj mediko-hirurgicheskij Centr im. N.I. Pirogova, 2022. 224 р. (In Russ.)

39. SHevchenko YUL, Stojko YUM, Gudymovich VG, CHernyago TYU. Glikokaliks — opredelyayushchij faktor v razvitii endotelial’noj venoznoj disfunkcii i vozmozhnosti ee korrekcii. Angiologiya i sosudistaya hirurgiya. 2020; 26(4): 71-77. (In Russ.)

40. SHevchenko YUL, Stojko YUM, Gudymovich VG, CHernyago TYU. Endotelial’nyj glikokaliks v obespechenii funkcii serdechno-sosudistoj sistemy. Vestnik Nacional’nogo mediko-hirurgicheskogo Centra im. N.I.Pirogova. 2020; 15(1): 107-112. (In Russ.)

For citation

Shevchenko Yu.L., Melkumyants A.M., Stoyko Yu.M., Yashkin M.N., Chernyago T.Yu., Gudymovich V.G. First results of visualization and structural assessment of the endothelial glycocalyx in varicose veins. Bulletin of Pirogov National Medical & Surgical Center. 2023;18(4):4-9. (In Russ.) https://doi.org/10.25881/20728255_2023_18_4_4