DOI: 10.25881/20728255_2021_16_3_77


Kulikov D.A.1, 2, Krasulina K.A.1, Glazkova P.A.1, Kovaleva Yu.A.1, Glazkov A.A.1, Barsukov I.A.1

1 Moscow Regional Research and Clinical Institute («MONIKI»)

2 Moscow Region State University, Mytishchi


Diabetic polyneuropathy is one of the most common consequences of diabetes mellitus and is associated with the long-term damaging effects of hyperglycemia on the peripheral nervous system. The methods most commonly used in clinical practice for diagnosis are related to the assessment of sensitivity and complaints of the patient. However, these approaches are subjective. A number of clinical trials in this area have failed due to a lack of effective criteria for dynamic assessment of the severity of neuropathy (surrogate endpoints). Despite the active development of methods for diagnosing nerve fiber lesions, such as corneal confocal microscopy, skin biopsy and others, there remains a need for an objective and quantitative technique. Nerve damage and decreased microvascular reactivity are known to have a close pathogenetic relationship. The use of skin microcirculation measurement by laser Doppler flowmetry is considered in this area. This review describes functional tests for measuring skin microvascular reactivity, which are proposed for the diagnosis of nerve fiber lesions. The results obtained by different research collectives are variable, but most authors find reduced responses to heat exposure, orthostatic test, and acetylcholine and sodium nitroprusside iontophoresis in patients with diabetic polyneuropathy. Laser Doppler flowmetry is a prospective method for application in this field, so there is a need for further research, development of standardized analysis algorithms and investigation of combinations of different methods of hemodynamic assessment.

Keywords: diabetes mellitus, diabetic neuropathies, skin, microcirculation, laser-Doppler flowmetry.


1. Juster-Switlyk K, Smith AG. Updates in diabetic peripheral neuropathy. F1000Research. 2016; 5: F1000 Faculty Rev-738. doi: 10.12688/f1000research.7898.1.

2. Dedov II, Shestakova MV, Mayorov AY, editors. Standards of specialized diabetes care. Мoscow; 2019. (In Russ). doi: 10.14341/DM221S1.

3. Pop-Busui R, Boulton AJM, Feldman EL, et al. Diabetic neuropathy: A position statement by the American diabetes association. Diabetes Care. 2017; 40(1): 136-154. doi: 10.2337/dc16-2042.

4. Nabuurs-Franssen MH, Houben AJHM, Tooke JE, Schaper NC. The effect of polyneuropathy on foot microcirculation in Type II diabetes. Diabetologia. 2002; 45(8): 1164-1171. doi: 10.1007/s00125-002-0872-z.

5. Sun P-C, Kuo C-D, Chi L-Y, et al. Microcirculatory vasomotor changes are associated with severity of peripheral neuropathy in patients with type 2 diabetes. Diabetes Vasc Dis Res. 2013; 10(3): 270-276. doi: 10.1177/ 1479164112465443.

6. Meyer MF, Rose CJ, Hülsmann JO, et al. Impairment of cutaneous arteriolar 0.1 Hz vasomotion in diabetes. Exp Clin Endocrinol Diabetes. 2003; 111(2): 104-110. doi: 10.1055/s-2003-39238.

7. Iwase M, Imoto H, Murata A, et al. Altered postural regulation of foot skin oxygenation and blood flow in patients with type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes. 2007; 115(7): 444-447. doi: 10.1055/s-2007-960499.

8. Terkelsen AJ, Karlsson P, Lauria G, et al. The diagnostic challenge of small fibre neuropathy: clinical presentations, evaluations, and causes. Lancet Neurol. 2017; 16(11): 934-944. doi: 10.1016/S1474-4422(17)30329-0.

9. Hijazi MM, Buchmann SJ, Sedghi A, et al. Assessment of cutaneous axon-reflex responses to evaluate functional integrity of autonomic small nerve fibers. Neurol Sci. 2020; 41(7): 1685-1696. doi: 10.1007/s10072-020-04293-w.

10. Krishnan STM, Quattrini C, Jeziorska M, et al. Abnormal LDIflare but normal quantitative sensory testing and dermal nerve fiber density in patients with painful diabetic neuropathy. Diabetes Care. 2009; 32(3): 451-455. doi: 10.2337/dc08-1453.

11. Emanuel AL, Nieuwenhoff MD, Klaassen ES, et al. Relationships Between Type 2 Diabetes, Neuropathy, and Microvascular Dysfunction: Evidence From Patients With Cryptogenic Axonal Polyneuropathy. Diabetes Care. 2017; 40(4): 583-590. doi: 10.2337/dc16-1690.

12. Azmi S, Petropoulos IN, Ferdousi M, et al. An update on the diagnosis and treatment of diabetic somatic and autonomic neuropathy [version 1; referees: 3 approved]. F1000Research. 2019; 8: F1000 Faculty Rev-186. doi: 10.12688/f1000research.17118.1.

13. Lal C, Unni SN. Correlation analysis of laser Doppler flowmetry signals: a potential non-invasive tool to assess microcirculatory changes in diabetes mellitus. Med Biol Eng Comput. 2015; 53(6): 557-566. doi: 10.1007/ s11517-015-1266-y.

14. Kulikov DA, Glazkov AA, Kovaleva YA, et al. Prospects of Laser Doppler flowmetry application in assessment of skin microcirculation in diabetes. Sakharnyy diabet. 2017; 20(4): 279–285. (in Russ). doi: 10.14341/DM8014.

15. Deegan AJ, Wang RK. Microvascular imaging of the skin. Phys Med Biol. 2019; 64(7): 07TR01. doi: 10.1088/1361-6560/ab03f1.

16. Santesson P, Lins PE, Kalani M, et al. Skin microvascular function in patients with type 1 diabetes: An observational study from the onset of diabetes. Diabetes Vasc Dis Res. 2017; 14(3): 191-199. doi: 10.1177/ 1479164117694463.

17. Fuchs D, Dupon PP, Schaap LA, Draijer R. The association between diabetes and dermal microvascular dysfunction non-invasively assessed by laser Doppler with local thermal hyperemia: A systematic review with meta-analysis. Cardiovasc Diabetol. 2017; 16(1): 11. doi: 10.1186/ s12933-016-0487-1.

18. Jan YK, Liao F, Cheing GLY, et al. Differences in skin blood flow oscillations between the plantar and dorsal foot in people with diabetes mellitus and peripheral neuropathy. Microvasc Res. 2019; 122: 45-51. doi: 10.1016/j.mvr.2018.11.002.

19. Sorelli M, Francia P, Bocchi L, et al. Assessment of cutaneous microcirculation by laser Doppler flowmetry in type 1 diabetes. Microvasc Res. 2019; 124: 91-96. doi: 10.1016/j.mvr.2019.04.002.

20. Cracowski J-L, Roustit M. Current Methods to Assess Human Cutaneous Blood Flow: An Updated Focus on Laser-Based-Techniques. Microcirculation. 2016; 23(5): 337-344. doi: 10.1111/micc.12257.

21. Glatte P, Buchmann SJ, Hijazi MM, et al. Architecture of the Cutaneous Autonomic Nervous System. Front Neurol. 2019; 10: 970. doi: 10.3389/ fneur.2019.00970.

22. Kasalová Z, Prázný M, Skrha J. Relationship between peripheral diabetic neuropathy and microvascular reactivity in patients with type 1 and type 2 diabetes mellitus -- neuropathy and microcirculation in diabetes. Exp Clin Endocrinol Diabetes. 2006; 114(2): 52-57. doi: 10.1055/s-2006-923895.

23. Watkins PJ, Edmonds ME. Sympathetic nerve failure in diabetes. Diabetologia. 1983; 25(2): 73-77. doi: 10.1007/BF00250890.

24. Tomešová J, Gruberova J, Lacigova S, et al. Differences in skin microcirculation on the upper and lower extremities in patients with diabetes mellitus: Relationship of diabetic neuropathy and skin microcirculation. Diabetes Technol Ther. 2013; 15(11): 968-975. doi: 10.1089/dia.2013.0083.

25. Okazaki K, Fu Q, Martini ER, et al. Vasoconstriction during venous congestion: Effects of venoarteriolar response, myogenic reflexes, and hemodyoamics of changing perfusion pressure. Am J Physiol Regul Integr Comp Physiol. 2005; 289(5): R1354-R1359. doi: 10.1152/ajpregu.00804.2004.

26. Yosipovitch G, Schneiderman J, van Dyk DJ, et al. Impairment of the postural venoarteriolar response in young type 1 diabetic patients — A study by laser Doppler flowmetry. Angiology. 1996; 47(7): 687-691. doi: 10.1177/000331979604700708.

27. Cacciatori V, Dellera A, Bellavere F, et al. Comparative assessment of peripheral sympathetic function by postural vasoconstriction arteriolar reflex and sympathetic skin response in NIDDM patients. Am J Med. 1997; 102(4): 365-370. doi: 10.1016/s0002-9343(97)00088-0.

28. Golster H, Hyllienmark L, Ledin T, et al. Impaired microvascular function related to poor metabolic control in young patients with diabetes. Clin Physiol Funct Imaging. 2005; 25(2): 100-105. doi: 10.1111/j.1475-097X. 2004.00596.x.

29. Petrie JR, Guzik TJ, Touyz RM. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can J Cardiol. 2018; 34(5): 575-584. doi: 10.1016/j.cjca.2017.12.005.

30. Tehrani S, Bergen K, Azizi L, Jörneskog G. Skin microvascular reactivity correlates to clinical microangiopathy in type 1 diabetes: A pilot study. Diabetes Vasc Dis Res. 2020; 17(3): 1479164120928303. doi: 10.1177/ 1479164120928303.

31. Fujii N, Meade RD, McNeely BD, et al. Type 2 diabetes specifically attenuates purinergic skin vasodilatation without affecting muscarinic and nicotinic skin vasodilatation and sweating. Exp Physiol. 2018; 103(2):212-221. doi: 10.1113/EP086694.

32. Schmiedel O, Nurmikko TJ, Schroeter ML, et al. Alpha adrenoceptor agonist-induced microcirculatory oscillations are reduced in diabetic neuropathy. Microvasc Res. 2008; 76(2): 124-131. doi: 10.1016/j.mvr.2008.04.004.

33. Krishnan STM, Rayman G. The LDIflare: A novel test of C-fiber function demonstrates early neuropathy in type 2 diabetes. Diabetes Care. 2004; 27(12): 2930-2935. doi: 10.2337/diacare.27.12.2930.

34. Todiras M, Alenina N, Bader M. Evaluation of endothelial dysfunction in vivo. In: Touyz R., Schiffrin E, editors. Hypertension. Methods in Molecular Biology. New York: Humana Press; 2017. p. 355-367. doi: 10.1007/978-1-4939-6625-7_28.

35. Pitei DL, Watkins PJ, Edmonds ME. NO-dependent smooth muscle vasodilatation is reduced in NIDDM patients with peripheral sensory neuropathy. Diabet Med. 1997; 14(4): 284-90. doi: 10.1002/(SICI)1096-9136(199704) 14:4<284::AID-DIA348>3.0.CO;2-0.

36. Caselli A, Spallone V, Marfia GA, et al. Validation of the nerve axon reflex for the assessment of small nerve fibre dysfunction. J Neurol Neurosurg Psychiatry. 2006; 77(8): 927-932. doi: 10.1136/jnnp.2005.069609.

37. Veves A, Akbari CM, Primavera J, et al. Endothelial dysfunction and the expression of endothelial nitric oxide synthetase in diabetic neuropathy, vascular disease, and foot ulceration. Diabetes. 1998; 7(3): 457-463. doi: 10.2337/diabetes.47.3.457.

38. Pfützner A, Forst T, Engelbach M, et al. The influence of isolated small nerve fibre dysfunction on microvascular control in patients with diabetes mellitus. Diabet Med. 2001; 18(6): 489-94. doi: 10.1046/j.1464-5491. 2001.00524.x.

39. Quattrini C, Harris ND, Malik RA, Tesfaye S. Impaired skin microvascular reactivity in painful diabetic neuropathy. Diabetes Care. 2007; 30(3): 655-659. doi: 10.2337/dc06-2154.

40. Roustit M, Cracowski JL. Assessment of endothelial and neurovascular function in human skin microcirculation. Trends Pharmacol Sci. 2013; 34(7): 373-384. doi: 10.1016/

41. Stansberry KB, Peppard HR, Babyak LM, et al. Primary nociceptive afferents mediate the blood flow dysfunction in non-glabrous (hairy) skin of type 2 diabetes: A new model for the pathogenesis of microvascular dysfunction. Diabetes Care. 1999; 22(9): 1549-1554. doi: 10.2337/ diacare.22.9.1549.

42. Vas PRJ, Green AQ, Rayman G. Small fibre dysfunction, microvascular complications and glycaemic control in type 1 diabetes: A case-control study. Diabetologia. 2012; 55(3): 795-800. doi: 10.1007/s00125-011-2417-9.

43. Krasulina KA, Glazkova PA, Glazkov AA, et al. Reduced microvascular reactivity in patients with diabetic neuropathy. Clin Hemorheol Microcirc. 2021; Preprint(Preprint): 1-12. doi: 10.3233/CH-211177.

44. Jan YK, Shen S, Foreman RD, Ennis WJ. Skin blood flow response to locally applied mechanical and thermal stresses in the diabetic foot. Microvasc Res. 2013; 89: 40-46. doi: 10.1016/j.mvr.2013.05.004.

45. Rogatkin DA. Fizicheskie osnovy sovremennykh opticheskikh metodov issledovaniya mikrogemodinamiki in vivo. Lektsiya. Meditsinskaya fizika. 2017; 76(4): 75-93. (In Russ).

46. Lapitan DG, Rogatkin DA. Functional studies on blood microcirculation system with laser Doppler flowmetry in clinical medicine: problems and prospects. Almanac of Clinical Medicine. 2016; 44(2): 249-259. (In Russ). doi: 10.18786/2072-0505-2016-44-2-249-259.

47. Rogatkin DA. Est’ li nauchnaya informatsiya v rezul’tatakh izmerenii metodom LDF? Lazer-Inform. 2015; 556(13): 1-6. (In Russ).

48. Netten PM, Wollersheim H, Thien T, Lutterman JA. Skin microcirculation of the foot in diabetic neuropathy. Clin Sci. 1996; 91(5): 559-565. doi: 10.1042/cs0910559.

For citation

Kulikov D.A., Krasulina K.A., Glazkova P.A., Kovaleva Yu.A., Glazkov A.A., Barsukov I.A. Laser Doppler flowmetry in the assessment of skin microcirculatory disorders in patients with diabetic polyneuropathy. Part 2. Bulletin of Pirogov National Medical & Surgical Center. 2021;16(3):77-83. (In Russ.)