DOI: 10.25881/BPNMSC.2020.41.38.021

Authors

Zhanuzakov D.Z.

B.N. Yeltsin Kyrgyz-Russian University, Bishkek, Kyrgyz Republic

Abstract

The structure, stages of development, the state of normal and pathological conditions of the cerebellum are presented and discussed, as well as modern methods of its correction. When studying the literature data, information was found about the main stages of the development of the cerebellum during the period of phylogeny and its successive morphological, physiological and biochemical transformations during ontogenesis. The influence on the cerebellum of pathological processes such as cerebral ischemia (IHI) and traumatic brain injury (TBI) is considered. According to statistics, a complicated course of stroke occurs in 70% of patients with massive cerebellar infarction. The study of cerebral ischemia is of great importance, since occupies a high position in morbidity and mortality among the population around the world. Also, every year the percentage of traumatic brain injuries is increasing, with the subsequent development of complications of the brain, the reason, one of which is also a change in the state of the cerebellum. The literature data on morphological and histological changes in the cerebellum were studied, which were experimentally carried out on laboratory rats. The study of the state of the cerebellum is one of the main criteria in the field of maxillofacial surgery, because with cerebellar pathology, in most cases there is a high risk of complications not only of traumatic brain injury, but also of the facial one. However, these materials are insufficient for studying the cerebellum, which requires further research and experiments on animals, namely, on rats.

Keywords: сerebellum, development, change, pathology, rat.

References

1. Ahmedov RL. Vozrastnye, individual’nye izmeneniya morfologicheskih i morfometricheskih parametrov kory mozzhechka u cheloveka. [Avtoreferat dissertation] 2007. (In Russ).

2. Balandin AA. Anatomicheskaya harakteristika mozzhechka i strukturnaya organizaciya ego kory v periode ot yunosheskogo do starcheskogo vozrasta. Nauchnaya elektronnaya biblioteka dissertacij i avtoreferatov disserCat. — 2018. (In Russ).

3. Blinkov SM, Glezer II. Mozg cheloveka v cifrah i tablicah. Leningrad: Medicina, 1964. 433 р. (In Russ).

4. Viliger E. Golovnoj i spinnoj mozg; per s nem. 1930. Р. 90–96. (In Russ).

5. Grinshtejn AM. Puti i centry nervnoj sistemy. М.: Medgiz. 1946. Р.93–108. (In Russ).

6. Danilov AV. Strukturno-funkcional’nye osobennosti mozzhechka krys pri dejstvii alkogolya i fizicheskoj nagruzki. [Dissertation] Ufa; 2009. (In Russ).

7. Dedov II, SHestakova MV. Saharnyj diabet. Diagnostika, lechenie, profilaktika. M. 2011. 801 р. (In Russ).

8. Dudenkova NA, SHubina OS. Citologicheskaya ocenka reproduktivnoj sposobnosti semennikov samcov belyh krys posle vozdejstviya acetata svinca. / V Mezhdunarodnaya nauchno-prakticheskaya konferenciya «Sovremennaya biologiya: aktual'nye voprosy»; fevral' 13-14, 2015; Sankt-Peterburg. (In Russ).

9. Egorova MV, SHubina OS. Morfologicheskaya harakteristika kory mozzhechka belyh krys pri eksperimental’noj travme. Zdorov’e i obrazovanie v XXI veke. 2016; 6: 99–102. URL (In Russ).

10. Egorova MV, SHubina OS. Morfometricheskoe sostoyanie nejronov kory polusharij mozzhechka belyh krys pri cherepno-mozgovoj travme. Zdorov’e i obrazovanie v XXI veke. 2016; 9: 95–102. URL (In Russ).

11. Egorova MV, SHubina OS. Nejroglial’noe sootnoshenie v sloe kletok grushevidnyh nejrocitov kory mozzhechka posle intoksikacii svincom i cherepno-mozgovoj travmy. Ul’yanovskij mediko-biologicheskij zhurnal. 2017; 4: 125–132. (In Russ).

12. Ivanov GF. Osnovy normal’noj anatomii cheloveka v 2 tomah. M.: Medgiz. 1949. (In Russ).

13. Ivanova GP, Gorobec LN, Litvinov AV, Bulanov VS, Vasilenko LM. Rol’ progesterona i ego metabolitov v regulyacii funkcij golovnogo mozga. ZHurnal nevrologii i psihiatrii im. S.S. Korsakova. 2018; 118(5): 129–137. (In Russ).

14. Kubarko AI, Semenovich AA, Pereverzev VA. Normal'naya fiziologiya. CHast' 1. Minsk: Vyshejshaya shkola. 2013. 412 р. (In Russ).

15. Makarov AYu. Posledstviya CHMT i ih klassifikaciya. Nevrologicheskij zhurnal. 2001; 6(2): 38–42. (In Russ).

16. Orlyanskaya TYа. Plastichnost’ nejronnyh populyacij kory i podkorkovyh obrazovanij mozzhechka v filogeneze pozvonochnyh: Morfo-citohimicheskoe issledovanie. [Avtoreferat dissertation] 2004. (In Russ).

17. Pereverzev IV. Osobennosti metabolizma golovnogo mozga pri insul’te mozzhechka. Nauchnaya elektronnaya biblioteka dissertacij i avtoreferatov disserCat. 2011. (In Russ).

18. Sveshnikov AV. Sovremennye dannye o stroenii i funkcii mozzhechka (Obzor). Matematicheskaya morfologiya. 2015; 14(4). (In Russ).

19. Trofimova TN. Luchevaya anatomiya cheloveka.SPb.: SPbMAPO, 2005. 496 р. (In Russ).

20. Faller A, SHyunke M. Anatomiya i fiziologiya cheloveka; per. s angl. M.:Binom. Laboratoriya znanij. 2008. — Р.430–432. (In Russ).

21. Hashchenko EP, Uvarova EV. Mekhanizmy vliyaniya progesterona i ego proizvodnyh na central’nuyu nervnuyu sistemu. Reprodukt. zdorov’e detej i podrostkov. 2014; 5: 68–71. (In Russ).

22. Hristoforando DYu. Analiz rasprostranennosti, diagnostiki i lecheniya sochetannoj cherepno-licevoj travmy. Medicinskij vestnik Severnogo Kavkaza. 2011; 3:36–37. (In Russ).

23. CHeplyaeva NI. Glibenklamid: dokazannye fakty, perspektivy, diskussii. Problemy endokrinologii (arhiv do 2020 g.). 2013; 59(3): 57–62. (In Russ).

24. Korrekcionnyj centr «Logoped-Praktik». Mozzhechkovaya stimulyaciya. URL (In Russ).

25. Opyt realizacii programmy mozzhechkovoj stimulyacii s primeneniem balansirovochnogo kompleksa Learning Breakthrough Kit (Balametrics) // Associaciya detskih nejropsihologov g. Moskvy. Razdatochnyj material k treningu-seminaru. (In Russ).

26. Bauer DJ, Peterson TC, Swain RA. Cerebellar dentate nuclei lesions alter prefrontal cortex dendritic spine morphology. Brain Res. 2014; 1544: 15–24. doi: 10.1016/j.brainres.2013.11.032.

27. Baulieu E, Schumacher M. Progesterone as a neuroactive neurosteroid, with special reference to the effect of progesterone on myelination. Steroids. 2000; 65(10–11): 605–612. doi: 10.1016/s0039-128x(00)00173-2.

28. Finocchi C, Ferrari M. Female reproductive steroids and neuronal excitability. Neurol Sci. 2011; 32(1): 31–35. doi: 10.1007/s10072-011-0532-5.

29. Grotta JC, Alexandrov AV. tPA-associated reperfusion after acute stroke. Stroke. 1998; 29: 429–432.

30. King TL, Brucker MC. Pharmacology for Women’s Health. Jones & Bartlett Publishers. 2010: 372–373.

31. Koenig HL, Schumacher M, Ferzaz B, Thi AN, Ressouches A, Guennoun R, Jung-Testas I, Robel P, Akwa Y, Baulieu EE. Progesterone synthesis and myelin formation by Schwann cells. Science. 1995; 268: 1500–1503. doi: 10.1126/science.7770777.

32. Manto M, Marmolino D. Animal models of human cerebellar ataxias: a cornerstone for the therapies of the twenty-first century. Cerebellum. 2009; 8(3): 137–54. doi: 10.1007/s12311-009-0127-3.

33. Matano S, Hirasaki E. Volumetric comparisons in the cerebellar complex of anthropoids, with special reference to locomotor types. Am J Phys Anthropol. 1997; 103(2): 173–83.

34. Saksena S, Husain N, Malik GK, Trivedi R, Sarma M, Rathore RS, Pandey CM, Gupta RK. Comparative evaluation of the cerebral and cerebellar white matter development in pediatric age group using quantitative diffusion tensor imaging. Cerebellum. 2008; 7(3): 392–400. doi: 10.1007/s12311-008-0041-0.

35. Schumacher M, Weill-Engerer S, Liere P, Robert F, Franklin RJ, Garcia-Segura LM, Lambert JJ, Mayo W, Melcangi RC, Parducz A, Suter U, Carelli C, Baulieu EE, Akwa Y. Steroid hormones and neurosteroids in normal and pathological aging of the nervous system. Prog Neurobiol. 2003; 71: 3–29. doi: 10.1016/j.pneurobio.2003.09.004.

36. Scott JA, Hamzelou KS, Rajagopalan V, Habas PA, Kim K, Barkovich AJ, Glenn OA, Studholme C. 3D morphometric analysis of human fetal cerebellar development. Cerebellum. 2012; 11(3): 761–70. doi: 10.1007/s12311-011-0338-2.

37. Triulzi F, Parazzini C, Righini A. Magnetic resonance imaging of fetal cerebellar development. Cerebellum. 2006; 5(3): 199–205.

38. Yamaguchi K, Goto N, Yamamoto TY. Development of human cerebellar nuclei. Morphometric study. Acta Anat (Basel). 1989; 136(1): 61–8.

39. Yew DT, Luo CB, Heizmann CW, Chan WY. Differential expression of calretinin, calbindin D28K and parvalbumin in the developing human cerebellum. Brain Res Dev Brain Res. 1997; 103(1): 37–45.

40. Zwain I, Yen S. Neurosteroidogenesis in astrocytes, oligodendrocytes, and neurons of cerebral cortex of rat brain. Endocrinology. 1999; 140: 3843–3852. doi:10.1210/en.140.8.3843.

For citation

Zhanuzakov D.Z. The state of the cerebellum in normal and pathological conditions (clinical and experimental data). Bulletin of Pirogov National Medical & Surgical Center. 2020;15(4):116-122. (In Russ.) https://doi.org/10.25881/BPNMSC.2020.41.38.021