DOI: 10.25881/BPNMSC.2020.38.22.021


Chepurnoj A.G., Shugushev Z.H., Maksimkin D.A.

RUDN, Moscow


The analysis of modern studies on renal artery denervation in patients with arterial hypertension is presented. Pathophysiological features of increasing the efficiency of the procedure are highlighted, according to which it is reasonable to perform prolonged ablation in the trunk of the renal artery, branches of the second and third order and in additional branches with a diameter of more than 3 mm Besides, it was shown that an increase in the number of ablation points enhance the likelihood of radiofrequency exposure to the site of afferent and efferent nerve fibers. Modern technological developments, that allow to make intraoperative mapping of the location of nerve fibers in the adventitia of the renal arteries, are presented. This makes it possible to conduct selective denervation of the renal arteries, thereby reducing the number of ineffective ablation points and increasing the susceptibility to surgical treatment of hypertension and increasing the frequency of effective interventions.

Keywords: renal sympathetic denervation, arterial hypertension.


1. Page IH, Heuer GJ. The effect of renal denervation on the level of arterial blood pressure and renal function in essential hypertension. J Clin Invest. 1935;14(1):27–30. doi: 10.1172/JCI100652.

2. Atherton DS, Deep NL, Mendelsohn FO. Micro-anatomy of the renal sympathetic nervous system: a human postmortem histologic study. Clin Anat. 2012;25(5):628–633. doi: 10.1002/ca.21280..

3. Sakakura K, Ladich E, Cheng Q, et al. Anatomic assessment of sympathetic periarterial renal nervesin man. Am J Coll Cardiol. 2014;64(7):635–643. doi: 10.1016/j.jacc.2014.03.059.

4. Esler M. Renal denervation: not as easy as it looks. Sci Transl Med. 2015;7:285fs18. doi: 10. 1126/scitranslmed. aaa5457.

5. Mahfoud F, Lüscher TF. Renal denervation: symply trapped by complexity? EurHeart J. 2015;36:199–202. doi: 10. 1093/eurheartj/ehu450.

6. Esler M. The sympathetic system and hypertension. Am J Hypert. 2000;13(1):99–105S.

7. Okada T, Pellerin O, Savard S, et al. Eligibility for renal denervation: anatomical classification and results in essential resistant hypertension. Cardiovasc Intervent Radiol. 2015;38(1):79–87. doi: 10.1007/s00270-014-0865-6.

8. Doumas M, Faselis C, Papademetriou V. Renal sympathetic denervation and systemic hypertension. Am J Cardiol. 2010;105(4):570–576. doi: 10.1016/j.amjcard.2009.10.027.

9. Fengler K, Ewen S, Hollriegel R, et al. Blood pressure response to main artery and combined main renal artery plus branch renal denervation in patients with resistant hypertension. J Am Heart Assoc. 2017;6(1):e006196. doi: 10.1161/JAHA.117.006196.

10. Mompeo B, Maranillo E, Garcia-Touchard A, et al. The gross anatomy of the renal sympathetic nerves revisited. Clin Anat. 2016;29(5):660–664. doi: 10.1002/ca.22720.

11. Kandzari DE, Kario K, Mahfoud F, et al. The SPYRAL HTN Global Clinical Trial Program: Rationale and design for studies of renal denervation in the absence (SPYRAL HTN OFF-MED) and presence (SPYRAL HTN ON-MED) of antihypertensive medications. Am Heart J. 2016;171(5):82–91. doi: 10.1016/j.ahj.2015.08.021.

12. Kandzari DE, Bhatt DL, Brar S, et al. Predictors of blood pressure response in the SYMPLICITY HTN-3 trial. Eur Heart J. 2015;36(2):219–227. doi: 10.1093/eurheartj/ehu441.

13. Kandzari DE, Bhatt DL, Sobotka PA, et al. Catheter-based renal denervation for resistant hypertension: rationale and design of the SYMPLICITY HTN-3 Trial. Clin Cardiol. 2012;35(9):528–535. doi: 10.1002/clc.22008.

14. Townsend RR, Mahfoud F, Kandzari DE, et al. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet. 2017;390(10108):2160–2170. doi: 10.1016/ S0140-6736(17)32281-X.

15. Barber-Chamoux N, Esler MD. Predictive factors for successful renal denervation: should we use them in clinical trials? Eur J Clin Invest. 2017;47(2):860–867. doi: 10.1111/eci.12792.

16. Anidjar S, Salzmann JL. Elastase-induced experimental aneurysms in rats. Circulation. 1990;82(3):973–981.

17. Bi Y, Zhong H, Xu K, et al. Development of a novel rabbit model of abdominal aortic aneurysm via a combination of periaortic calcium chloride and elastase incubation. PLoS One. 2013;8(7):e68476. doi: 10.1371/journal.pone.0068476.

18. Gross J. Thermal denaturation of collagen in the disperse dan solid state. Science. 1964;143(3609):960–961. doi: 10.1126/science.143.3609.960.

19. Venkatasubramanian RT, Wolkers WF, Shenoi MM, et al. Freeze-thaw induced biomechanical changes in arteries: role of collagen matrix and smooth muscle cells. Ann Biomed Eng. 2010;38(3):694–706. doi: 10.1007/s10439-010-9921-9.

20. Brown XQ, Bartolak-Suki E, Williams C, et al. Effect of substrate stiffness and PDGF on the behavior of vascular smooth muscle cells: implications for atherosclerosis. J Cell Physiol. 2010;225(1):115–122. doi: 10.1002/jcp.22202.

21. Lerman LO, Schwartz RS, Grande JP, et al. Noninvasive evaluation of a novel swine model of renal artery stenosis. J Am Soc Nephrol. 1999;10(7):1455–1465.

22. Swindle MM, Makin A, Herron AJ, et al. Swine as models in biomedical research and toxicology testing. Vet Pathol. 2012;49(2):344–356. doi: 10.1177/0300985811402846.

23. Aronow WS. The older man’s heart and heart disease. Med Clin North Am. 1999;83(5):1291–1303.

24. Hopkins AA, Sheridan WS, Sharif F, Murphy BP. The effect of a thermal renal denervation cycle on the mechanical roperties of the arterial wall. J Biomech. 2014;47(15):3689–3694. doi: 10.1016/j.jbiomech.2014.09.029i.

25. Mahfoud F, Schlaich M, Bohm M, et al. Catheter-based renal denervation: the next chapter begins. Eur Heart J. 2018;39:4144–4149. doi: 10.1093/eurheartj/ehy584.

26. Fudim M, Sobotka A.A, Yin Y.H, et al. Selective vs. global renal denervation: a case for less is more. Curr Hypertens Rep. 2018;20:37. doi: 10.1007/s11906-018-0838-2.

27. Lu J, Wang Z, Zhou T, Chen S, et al. Selective proximal renal denervation guided by autonomic responses evoked via high-frequency stimulation in a preclinical canine model. Circ Cardiovasc Interv. 2015;8(6):e001847. doi: 10.1161/CIRCINTERVENTIONS.115.001847.

28. Tzafriri AR, Mahfoud F, Keating JH, et al. Innervation patterns may limit response to endovascular renal denervation. J Am Coll Cardiol. 2014;64:1079–1087. doi: 10.1016/j.jacc.2014.07.937

29. Osborn JW, Foss JD. Renal nerves and long-term control of arterial pressure. Compr Physiol. 2017;7:263–320. doi: 10.1002/cphy.c150047

30. Kopp UC. Role of renal sensory nerves in physiological and pathophysiological conditions. Am J Physiol Regul Integr Comp Physiol. 2015;308:R79–R95. doi: 10.1152/ajpregu.00351.2014.

31. De Jong MR, Hoogerwaard AF, Adiyaman A, et al. Renal nerve stimulation identifies aorticorenal innervation and prevents inadvertent ablation of vagal nerves during renal denervation. Blood Press. 2018;27(5):271–279. doi: 10.1080/08037051.2018.1463817.

32. Murai H, Okuyama Y, Sakata Y, et al. Different responses of arterial blood pressure to electrical stimulation of the renal artery in patients with resistant hypertension. Int J Cardiol. 2015;190:296–298. doi: 10.1016/j.ijcard.2015.04.196.

33. Krum H, Schlaich M, Whitbourn R, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373(9671):1275–1281. doi: 10.1016/S0140-6736(09)60566-3.

34. Esler MD, Krum H, Sobotka PA, et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet. 2010;376(9756):1903–1909. doi: 10.1016/S0140-6736(10)62039-9.

35. Bhatt DL, Kandzari DE, O’Neill WW, et al. SYMPLICITY HTN-3 Investigators. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370(15):1393–401. doi: 10.1056/NEJMoa1402670.

36. Kandzari DE, Bohm M, Mahfoud F, et al. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet. 2018;391(10137):2346–2355. doi: 10.1016/S0140-6736(18)30951-6.

37. Tsioufis KP, Feyz L, Dimitriadis K. Safety and performance of diagnostic electrical mapping of renal nerves in hypertensive patients. Euro Intervention. 2018;14(12):e1334–e1342. doi: 10.4244/EIJ-D-18-00536.

For citation

Chepurnoj A.G., Shugushev Z.H., Maksimkin D.A. Modern opportunities for improving the technique of radiofrequency denervation of the renal arteries. Bulletin of Pirogov National Medical & Surgical Center. 2020;15(3-2):114-118. (In Russ.)