DOI: 10.25881/20728255_2023_19_1_136

Authors

Egorova E.A., Kalinin R.E., Suchkov I.A.

Ryazan State Medical University, Ryazan

Abstract

The discovery of the laser in 1960 was preceded by a long period of scientific research. The combination of achievements in quantum physics and radio engineering allowed Theodore Maiman to launch the first, completely new light source on May 16, 1960 — a laser. Laser devices have undergone a number of significant changes over a long time, and the range of their applications has expanded. Today lasers are actively used in various areas of medical practice. Lasers have indications and contraindications. Lasers are used to correct a large number of aesthetic problems, depending on the optical, thermos-physical properties of the tissue and the target chromophore. Laser therapy has advantages over traditional treatment methods: precision, minimal invasiveness and fast recovery time after the procedure.

The review article presents in detail the history of laser technologies, describes the currently existing types of laser devices actively used by dermatologists and phlebologists in their practice. The study of this issue is relevant because this method of treatment is in constant development and improvement.

Keywords: history, laser, dermatology, phlebology, indications, contraindications.

References

1. Potekaev NN, Kruglova LS. Laser in dermatology and cosmetology. M.: MDV; 2012. (In Russ.)

2. Priezdaev AV, Tuchin VV, Shubochkin LP. Laser diagnostics in biology and medicine. M.: Science, 1989. (In Russ.)

3. Stratigos AJ, Dover JS, Arndt KA. Lasertherapie in der ästhetischen Dermatologie. Hautarzt. 2003; 54(7): 603-613. doi: 10.1007/s00105-003-0549-7.

4. Sheehan-Dare RA, Cotterill JA. Lasers in dermatology. Br J Dermatol. 1993; 129(1): 1-8. doi: 10.1111/j.1365-2133.1993.tb03302.x.

5. Geiges ML. History of lasers in dermatology. Curr Probl Dermatol. 2011; 42: 1-6. doi: 10.1159/000328225.

6. Graudenz K, Raulin C. Von Einsteins Quantentheorie zur modernen Lasertherapie. Historie des Lasers in der Dermatologie und ästhetischen Medizin. Hautarzt. 2003; 54(7): 575-582. doi: 10.1007/s00105-003-0542-1.

7. Einstein A. Zur Quantentheorie der Strahlung. Physikalische Gesellschaft Zürich. 1916; 18: 47-62.

8. Kopfermann H, Ladenburg R. Untersuchungen über die anomale Dispersion angeregter Gase II Teil. Anomale Dispersion in angeregtem Neon — Einflußvon Strom und Druck, Bildung und Vernichtung angeregter Atome. Zschr Physik. 1928; 48: 26-50. doi: 10.1007/BF01351572.

9. Weber J. Amplification of microwave radiation by substances not in thermal equilibrium. Trans Inst Radio Eng PGED. 1953; 3: 1. doi: 10.1109/ irepged.1953.6811068.

10. Basov NG, Prokhorov AM. Application of molecular beams to the radio spectroscopic study of the rotation spectra of molecules. Zh Eksp Theo Fiz. 1954; 27: 431.

11. Gordon JP, Zeiger HJ, Townes CH. The Maser — new type of microwave amplifier, frequency standard, and spectrometer. Phys Rev. 1955; 99: 1264-1274. doi: 10.1103/PhysRev.99.1264.

12. Bloembergen N. Proposal for a new type solid-state maser. Phys Rev. 1956; 104: 324-327. doi: 10.1103/PhysRev.104.324.

13. Schawlaow AL, Townes CH. Infrared and optical masers. Phys Rev. 1958; 112: 1940-1949. doi: 10.1103/PhysRev.112.1940.

14. Maiman TH. Stimulated optical radiation in ruby. Nature. 1960; 187: 493-494. doi: 10.1038/187493a0.

15. Hecht J. Short history of laser development. Opt. Eng. 2010; 49(9): 091002. doi: 10.1117/1.3483597.

16. Goldman L, Blaney DJ, Kindel DJ, Franke EK. Effect of the laser beam on the skin. J Invest Dermatol. 1963; 40: 121-122. doi: 10.1038/ jid.1963.21.

17. Hecht J. Short history of laser development. Opt. Eng. 2010; 49(9): 091002. doi: 10.1117/1.3483597.

18. Gade A, Vasile GF, Rubenstein R. Intense Pulsed Light (IPL) Therapy. In: StatPearls. Treasure Island (FL): StatPearls Publishing; April 10, 2023.

19. Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 1983; 220(4596): 524-7.

20. Manstein D, Herron GS, Sink RK, Tanner H, Anderson RR. Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury. Lasers Surg Med 2004; 34(5): 426-438. doi: 10.1002/lsm.20048.

21. Wanner M, Tanzi EL, Alster TS. Fractional photothermolysis: treatment of facial and nonfacial cutaneous photodamage with a 1,550-nm erbium-doped fiber laser. Dermatol Surg 2007; 33(1): 23-28. doi: 10.1111/ j.1524-4725.2007.33003.x.

22. Kono T, Chan HH, Groff WF, et al. Prospective direct comparison study of fractional resurfacing using different fluences and densities for skin rejuvenation in Asians. Lasers Surg Med 2007; 39(4): 311-314. doi: 10.1002/lsm.20484.

23. Tierney EP, Kouba DJ, Hanke CW. Review of fractional photothermolysis: treatment indications and efficacy. Dermatol Surg. 2009; 35(10): 1445-1461. doi: 10.1111/j.1524-4725.2009.01258.x.

24. Hsiao FC, Bock GN, Eisen DB. Recent advances in fractional laser resurfacing: new paradigm in optimal parameters and post-treatment wound care. Adv Wound Care (New Rochelle). 2012; 1(5): 207-212. doi: 10.1089/ wound.2011.0323.

25. Helbig D, Paasch U. Molecular changes during skin aging and wound healing after fractional ablative photothermolysis. Skin Res Technol. 2011; 17(1): 119-129. doi: 10.1111/j.1600-0846.2010.00477.x.

26. Arany PR, Nayak RS, Hallikerimath S, et al. Activation of latent TGF-beta1 by lowpower laser in vitro correlates with increased TGF-beta1 levels in laser-enhanced oral wound healing. Wound Repair Regen. 2007; 15(6): 866-874. doi: 10.1111/j.1524475X.2007.00306.x.

27. Hantash BM, Bedi VP, Kapadia B, et al. In vivo histological evaluation of a novel ablative fractional resurfacing device. Lasers Surg Med. 2007; 39(2): 96-107. doi: 10.1002/lsm.20468.

28. Ravanti L, Kähäri VM. Matrix metalloproteinases in wound repair (review). Int J Mol Med. 2000; 6(4): 391-407. doi: 10.3892/ijmm.6.4.391.

29. Souil E, Capon A, Mordon S, Dinh-Xuan AT, Polla BS, Bachelet M. Treatment with 815-nm diode laser induces long-lasting expression of 72-kDa heat shock protein in normal rat skin. Br J Dermatol. 2001; 144(2): 260-266. doi: 10.1046/j.1365-2133.2001.04010.x.

30. Wilmink GJ, Opalenik SR, Beckham JT, et al. Molecular imaging-assisted optimization of hsp70 expression during laser-induced thermal preconditioning for wound repair enhancement. J Invest Dermatol. 2009; 129(1): 205-216. doi: 10.1038/ jid.2008.175.

31. Atalay M, Oksala N, Lappalainen J, Laaksonen DE, Sen CK, Roy S. Heat shock proteins in diabetes and wound healing. Curr Protein Pept Sci. 2009; 10(1): 85-95. doi: 2174/138920309787315202.

32. Laplante AF, Moulin V, Auger FA, et al. Expression of heat shock proteins in mouse skin during wound healing. J Histochem Cytochem. 1998; 46(11): 1291-1301. doi: 10.1177/002215549804601109.

33. Laubach HJ, Tannous Z, Anderson RR, Manstein D. Skin responses to fractional photothermolysis. Lasers Surg Med. 2006; 38(2): 142-149. doi: 10.1002/lsm.20254.

34. Helbig D, Bodendorf M, Anderegg U, Simon JC, Paasch U. Human skin explant model to study molecular chances in response to fractional photothermolysis: spatiotemporal expression of HSP70. Medical Laser Application. 2010; 25: 173-180.

35. Helbig D, Moebius A, Simon JC, Paasch U. Nonablative skin rejuvenation devices and the role of heat shock protein 70: results of a human skin explant model. J Biomed Opt. 2010; 15(3): 038002. doi: 10.1117/1.3449736.

36. Karabut ММ, Gladkova ND, Feldchtein F.I. Fractional laser photothermolysis in the treatment of skin defects: possibilities and effectiveness (review). Sovremennye tehnologii v medicine. 2016; 8(2): 98-108. doi: 10.17691/ stm2016.8.2.14.

37. Raulin C, Greve B, Grema H. IPL technology: a review. Lasers Surg Med. 2003; 32(2): 78-87. doi: 10.1002/lsm.10145.

38. Husain Z, Alster TS. The role of lasers and intense pulsed light technology in dermatology. Clin Cosmet Investig Dermatol. 2016; 9: 29-40. doi: 10.2147/CCID.S69106.

39. Mikhailova IA, Papayan GV, et al. The basic principles of the use of laser systems in medicine. Acad.N.N. Petrishchev, editor. St. Petersburg, 2007, 44 p. (In Russ.)

40. Nevorotin AI. Introduction to laser surgery. St. Petersburg: Spetslit, 2000. (In Russ.)

41. Tuchin VV. Fundamentals of interaction of low-intensity laser radiation with biological tissues: dosimetric and diagnostic aspects. Izv. ANRF. Ser. phys. 1995; 59(6): 120-143. (In Russ.)

42. Shakhno EA. The physical basis of the use of lasers in medicine. St. Petersburg: ITMO Research Institute, 2012. 129 p. (In Russ.)

43. Wurtman RJ. The medical and biological effects of light. Clin. Exp. Dermatol. 1993; 16(2): 24-8.

44. Crochet JJ, Gnyawali SC, Chen Y, et al. Temperature distribution in selective laser-tissue interaction. J. Biomed. Opt. 2006; 11(3): 134-9.

45. Edris A, Choi B, Aguilar G, Nelson JS. Measurements of laser light attenuation following cryogen spray cooling spurt termination. Lasers Surg. Med. 2003; 32(2): 143-7.

46. Goldman L, Blaney DJ, Kindel DJJr, Franke EK. Effect of the laser beam on the skin. Preliminary report. J. Invest. Dermatol. 1963; 40: 121-2.

47. Patil UA, Dhami LD. Overview of lasers. Indian J Plast Surg. 2008; 41: S101-S113.

48. Kimel S, Svaasand LO, Hammer-Wilson MJ, Nelson JS. Infl uence of wavelength on response to laser photothermolysis of blood vessels: Implications for port wine stain laser therapy. Lasers Surg. Med. 2003; 33(5): 288-95.

49. Hedelund L, Haedersdal M, Egekvist H, Heidenheim M, Wulf HC, Poulsen T. CO2 laser resurfacing and photocarcinogenesis: An experimental study. Lasers Surg. Med. 2004; 35(1): 58-61.

50. Kim J, John R, Wu PJ, Martini MC, Walsh JT. Jr. In vivo characterization of human pigmented lesions by degree of linear polarization image maps using incident linearly polarized light. Lasers Surg. Med. 2010; 42(1): 76-85.

51. Kamaev AA, Bulatov VL, Vakhratyan PE, et al Varicose Veins. Flebologiya. 2022; 16(1): 41‑108. (In Russ.) doi: 10.17116/flebo20221601141.

52. Hillegherbersg R. Fundamental of Laser Surgery. Eur J Surg. 1997; 163: 3-12.

53. Dover JS, Arndt KA. New approaches of the treatment of vascular lesions. Laser Surg Med. 2000; 26: 158-163. doi: 10.1002/(SICI)1096-9101 (2000)26:2<158::AID-LSM6>3.0.CO;2-O.

54. Goldman MP, Fitzpatrick RE. Laser treatment of cutaneous vascular lesions. In Cutaneous Laser surgery. 2nd edition. Mosby: St Louis; 1999.

55. Hecht J. A short history of laser development. Appl Opt. 2010; 49(25): F99-122. doi: 10.1364/AO.49.000F99. PMID: 20820206.

56. Kalinin RE, Suchkov IA, Shanaev IN, Yudin VA. Hemodynamic disorders in varicose vein disease. Science of the young. 2021; 9(1): 68-76. (In Russ.) doi: 10.23888/HMJ20219168-76.

57. Shanayev IN, Korbut VS, Khashumov RM. Atypical Forms of Lower Limb Varicose Vein Disease: Features of Diagnosis and Surgical Treatment. I.P. Pavlov Russian Medical Biological Herald. 2023; 31(4): 551-562. (In Russ.) doi: https://doi.org/10.17816/PAVLOVJ107079.

For citation

Egorova E.A., Kalinin R.E., Suchkov I.A. Laser technologies in aesthetic medicine: past and present. Bulletin of Pirogov National Medical & Surgical Center. 2024;19(1):136-142. (In Russ.) https://doi.org/10.25881/20728255_2023_19_1_136