DOI: 10.25881/20728255_2023_19_1_130

Авторы

Тимербулатов В.М., Валишин Д.А., Тимербулатов Ш.В.

ФГБУ«Башкирский государственный медицинский университет», Уфа

Аннотация

Значительное увеличение количества так называемых «отложенных» пациентов, которым плановые операции переносились на более поздние сроки, после острой фазы ближе к постпандемической фазе COVID-19, создает серьезные проблемы для систем здравоохранения различных стран, вынуждает хирургов предпринимать более активную стратегию для лечения этих пациентов и предотвращения их дальнейшего роста. Известно, что в настоящее время по различным оценкам, в мире накопилось 28 миллионов отложенных операций в пиковый период пандемии COVID-19. Существует также проблема оказания плановой хирургической помощи пациентам, перенесшим бессимптомную форму новой коронавирусной инфекции SARS-CoV-2. До сегодняшнего дня остается недостаточно ясной степень безопасности пациентов, медперсонала, перенесших бессимптомную или симптомную формы COVID-19. Большинство исследователей полагают, что отбор больных для плановых операций и оперативных вмешательств должен основываться на всесторонней, комплексной (в т.ч. лабораторной, инструментальной) оценке состояния пациентов, перенесших COVID-19, и операции должны выполняться с соблюдением противоэпидемических мер, использованием средств индивидуальной защиты медперсоналом и пациентами.

Ключевые слова: новая коронавирусная инфекция COVID-19, отбор к плановым оперативным вмешательствам, предоперационное обследование, сроки до операций.

Список литературы

1. Bui N., Coeter M., Schenning KJ, O`Glasser A.Y. Preparing previously COVID-19-positive patients for elective surgery: a framework for preoperative evaluation. Perioperative medicine. 2021; 10: 4. doi: 10.1186/S13741-020-00172-2.

2. Nepogodiev D, Bhangu A. Elective surgery cancellations due to the COVID-19 pandemic: global predictive modelling to inform surgical recovery plans. Br J Surg. 2020. doi: 10.1002/bjs.11746.

3. Prachand VN, Milner R, Angelos P, et al. Medically necessary, time-sensitive procedures: a scoring system to ethically and efficiently manage resource scarcity and provider risk during the COVID-19 pandemic. J Am Coll Surg, 2020: 231: 281-288.

4. Soreide, Halletj, Matthews JB, et al. Immediateandlong-termimpactofthe COVID-19 pandemic on delivery of surgical services. Br J Surg. 2020. doi: 10.1002/bjs. 11670.

5. Gandhi M, Yokoe DS, Havlir DV. Asymptomatic Transmission, the Achilles Heel of Current Strategies to Control Covid-19. N Engl J Med. 2020; 382: 2158-2160.

6. Oran DP, Topol EJ. Prevalence of asymptomatic SARS-CoV-2 infection. Ann Intern Med. 2020; 173: 362-367.

7. Li R, Pei S, Chen B, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV2), Science. 2020; 368: 489-493.

8. Woloshin S, Patel N, Kesselheim AS, False negative tests for SARS-CoV-2 infection — challenges and implications. N Engl J Med. 2020; 283: e38.

9. Watson J, Whiting PF, Brush JE. Interpreting a covid-19 test result. BMJ. 2020; 369: m 1808.

10. Kissler SM, Tedijanto C, Goldstein E, et al. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science. 2020: 368: 860.

11. Stringhini S, Wisniak A, Piumatti G, et al. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCOV-POP): a population-based study. Lancet. 2020; 396: 313-319.

12. Polla’nM, Pe rez-Go‘mezB, Pastor-BarriusoR, et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study. Lancet. 2020; 396: 535-544.

13. Soreide K, Yaqub S, Hallet Jetal. A Risk Model of Admitting Patients With Silent SARS-CoV-2 Infection to Surgery and Development of Severe Postoperative Outcomes and Death. Annals of Surgery. 2021; 273(2): 208-216. doi:10.1097/SLA.0000000000004583.

14. Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV.2 infection an international cohort study, Lancet. 2020, 396: 27-38.

15. Gandhi M, Yokoe DS, Havlir DV. Asymptomatic transmission, the Achilles heel of current strategies to control Covid-19. N Engl J Med. 2020; 382: 2158-2160.

16. Graham LA, Maldonado YA, Tomkins LS, et al. Asymptomatic SARS-CoV-2 Transmission from Community Contacts in Healthcare Workers. Ann Surg. 2020. doi: 10.1097/SLA.0000000000003968.

17. Holmer H, Bekele A, Hagander L, et al. Evaluating the collection, comparability and findingsof six global surgery indicators. Br J Surg. 2019; 106: e138-150.

18. Weiser TG, Haynes AB, Molina G, et al. Size and distribution of the global volume of surgery in Bull World Health Organ. 2016; 94: 201-209.

19. Omling E, Jarnheimer A, Rose J, et al. Population-based incidence rate of inpatient and outpatient surgical procedures in a high-income country. Br J Surg. 2018; 105: 86-95.

20. Lei S, Jiang F, Su W, et al. Clinical characteristics and outcomes of patients undergoing surgeries during the incubation period of COVID-19 infection. EClinicalMedicine. 2020. doi: 10.1016/j.eclinm.2020.100331.

21. Pettengill MA, McAdam AJ. Can we test our way out of the COVID-19 pandemic? J Clin Microbiol. 2020. doi: 10.1128/JCM.02225-20.

22. Pearse RM, Moreno RP, Bauer P, et al. Mortality after surgery in Europe: a 7 day cohort study. Lancet. 2012; 380: 1059-1065.

23. Mangalmurti N, Hunter CA. Cytokine Storms: Understanding COVID-19. Immunity. 2020: 53: 19-25.

24. Holter JC, Pischke SE, de Boer E, et al. Systemic complement activation is associated with respiratory failure in COVID-19 hospitalized patients. Proc Natl Acad Sci US A. 2020; 117: 25018-25025.

25. Clark A, Jit M, Warren-Gash C, et al. Global, regional, and national estimates of the population at increased risk of severe COVID-19 due to underlying health conditions in 2020: a modelling study. Lancet Global Health. 2020; 8: E1003-E1017.

26. Dowd JB, Andriano L, Brazel DM, et al. Demographic science aids in understanding the spread and fatality rates of COVID-19. Proc Natl Acad Sci US A. 2020; 117: 9696-9698.

27. Nepogodiev D, Bhangu A, Glasbey J, et al. Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-COV-2 infection: an international cohort study. Lancet 2020, 396(10243): 27-38.

28. Doglietto F, Vezzoli M, Gheza F, et al. Factors associated with surgical mortality and complications among patients with and without coronavirus disease 2019 (COVID-19) in Italy. JAMA Surg. 2020; 155(8): 691-702.

29. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395(10229): 1054-62.

30. Gao Y, Li T, Han M, et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J Med Virol. 2020, 92: 791-6.

31. Zhang L, Yan X, Fan Q, et al. D-dimer levels on admission to predict in-hospital mortality in patients with COVID-19. J Thromb Haemost. 2020, 18: 1324-9.

32. Tang N, LI D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020; 18: 844-7.

33. Moldofsky H, Patcai J. Chronic widespread musculoskeletal pain, fatigue, depression and disordered sleep in chronic post-SARS syndrome; a case controlled study. BMC Neurol. 2011; 11(37).

34. Fugl A, Andersen CL. Epstein-Barr virus and its association with disease — a review of relevance to general practice. BMC Fam Pract. 2019; 14(20): 62.

35. Carroll E. Neumann H. Aguero-Rosenfeld ME, et al. Post-COMID-19 inflammatory syndrome manifesting as refractory status epilepticus. Epilepsia 2020, 61: e135-9. doi: 10.1111/epi.16683.

36. Chan M. Han SC, Kelly S, Tamimi M, Giglio B, Lewis A. A case series of Guillain-Barré syndrome following COVID-19 infection in New York (published online ahead of print). Neurol Clin Pract. 2020. doi: 10.1212/CPJ. 0000000000000880.

37. Novi G, Rossi T, Pedemonte E, Saitta L. Rolla C, Roccatagliata L, et al. Acute disseminated encephalomyelitis after SARS-CoV-2 infection. Neurol Neuroimmunol Neuroinflamm. 2020; 7(5): e797.

38. Zulfiqar AA, Lorenzo-Villalba N, Hassler P, Andres E. Immune thrombocytopenic purpura in a patient with COVID-19. N. Engl. J Med. 2020; 382: e43.

39. Galeotti C. Bayry J. Autoimmune and inflammatory diseases following COVID-19. Nat Rev Rheumatol. 2020; 16: 413-4. doi: 10.1038/ 541584-020-0448-7.

40. Lazarian G, et al. Autoimmune haemolytic anaemia associated with COVID-19 infection. Br. J. Haematol. 2020. doi: 10.1111/bjh.16794.

41. Livhits M. Ko CY, Leonardi MJ, et al. Risk of surgery following recent myocardial infarction. J Vascular Surg. 2011; 253(5): 857-64.

42. Mehdi Z, Birns J, Partridge J, et al. Perioperative management of adult patients with a history of stroke or transient ischaemic attack undergoing elective non-cardiac surgery. Clinical medicine. 2016; 16(6): 535-40.

43. Jørgensen ME, Torp-Pedersen Gislason GH, et al. Time elapsed after ischemic stroke and risk of adverse cardiovascular events and mortality following elective noncardiac surgery. JAMA. 2014; 312: 269-77.

44. Canet J, Sanchis J, Briones Z, et al. Recent acute respiratory tract infection in adults is a significant risk factor of postoperative complications. Eur J Anesthesiol. 2008; 25: 72-3.

45. Aquilina AT, Hall WJ, Douglas RG Jr, et al. Airway reactivity in subjects with viral upper respiratory tract infections: the effects of exercise and cold air. Am Rev Respir Dis. 1980; 122(1): 3-10.

46. Bruera E, Kuehn N, Miller M, et al. The Edmonton Symptom Assessment System (ESAS): A simple method for the assessment of palliative care patients. Journal of Palliative Care. 1991; 7: 6-9.

47. Zhao Y, Shang Y, Song W, et al. Follow-up study of the pulmonary function and related physiological characteristics of COVID-19 survivors three months after recovery. Lancet. 2020; 25: 100463.

48. Mo X, Jian W. Su Z, et al. Abnormal pulmonary function in COVID-19 patients at time of hospital discharge. Eur Respir J. 2020, 55(6): 2001217.

49. Xu Z, Shi L Wang Y, et al. Pathological findings of COVID-19 associated with acute syndrome. Lancet Respir Med. 2020; 8: 420-422.

50. Hui DS, Joynt GM, Wong KT, et al. Impact of severe acute respiratory syndrome (SARS) on pulmonary function functional capacity and quality of life in a cohort of survivors. Thorax. 2005; 60: 401-409.

51. Hui DS Wong KT, Ko FW, et al. The 1-year impact of severe acute respiratory syndrome on pulmonary function, exercise capacity, and quality of life in a cohort of survivors. Chest 2005; 128: 2247-2261.

52. Ngai JC, Ko FW, Ng SS, et al. The long-term impact of severe acute respiratory syndrome on pulmonary function, exercise capacity and health status. Respirology. 2010; 15: 543-550.

53. Park WB, Jun KI, Kim G, et al. Correlation between pneumonia severity and pulmonary complications in Middle East respiratory syndrome. J Korean Med Sci. 2018; 33: e169.

54. Zhao Y, Shang Y, Song W, et al. Follow-up study of the pulmonary function and related physiological characteristics of COVID-19 survivors three months after recovery. 2020. Published Elsevier Ltd. doi: 10/1016/j. eclinm.2020.100463.

Для цитирования

Тимербулатов В.М., Валишин Д.А., Тимербулатов Ш.В. Плановые хирургические вмешательства у пациентов, ранее инфицированных COVID-19. Вестник НМХЦ им. Н.И. Пирогова. 2024;19(1):130-135. https://doi.org/10.25881/20728255_2023_19_1_130