DOI: 10.25881/20728255_2021_16_2_132


Krainyukov P.E.1,2, Artsimovich I.V.3, Zinoviev E.V.3,4, Gostimskiy A.V.3, Kostyakov D.V.3,4, Kokorin V.V.1,5, Vahaev D.S.5

1 Central Military Clinical Hospital. P.V. Mandryka of the Ministry of Defense of the Russian Federation, Moscow

2 RUDN University, Moscow

3 St. Petersburg State Pediatric Medical University, St. Petersburg

4 Research Institute Of Emergency Medecine named after I.I. Djanelidzе, St. Petersburg

5 Pirogov National Medical and Surgical Center, Moscow


The active development of tissue engineering and cell technologies has allowed us to develop new methods of treating wounds of various etiologies. The advances made in the study of human stem cell biology in vitro and in vivo experimental models in recent decades could not fail to attract the attention of practitioners. Embryonic stem cells, mesenchymal stem cells, adipogenic mesenchymal stem cells, and hematopoietic stem cells are currently being studied most intensively. Gradually, the possibilities of biotechnological restoration of the skin are being introduced into practice both in our country and abroad. Every year, the number of clinical trials conducted in different countries of the world is steadily growing. Many researchers note the effectiveness of the use of stem cells in the treatment of full-layer skin defects. However, the issues of choosing the ideal source of stem cells and the method of their delivery to the wound defect area remain unresolved. Further experimental and clinical studies of the effectiveness of the use of stem cells and the evaluation of their effect on reparative histogenesis are required.

Keywords: stem, mesenchymal, cell, wound, burn, repair, engineering, technology.


1. Gluckman E, Broxmeyer HA, Auerbach AD, et al. Hematopoietic reconstitution in a patient with Fanconi´s anemia by means of umbilical-cord blood from an HLA-identical sibling. N.Engl.J.Med. 1989; 321: 1174.

2. Menasche P, Hagege AA, Scorsin M, et al. Myoblast transplantation for heart failure. Lancet. 2001; 357(9252): 279.

3. Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp. Mol Med. 2013; 45(11): e54. Published 2013 Nov 15. doi:10.1038/emm.2013.94.

4. Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation. 1974; 17(4): 331-340. doi:10.1097/00007890-197404000-00001.

5. Cottler-Fox M.H, Lapidot T, Petit I, Kollet O, DiPersio JF, Link D, Devine S. Stem cell mobilization. Hematology Am Soc Hematol Educ Program. 2003; 1: 419-437. doi: 10.1182/asheducation-2003.1.419.

6. Fu S, Liesveld J. Mobilization of hematopoietic stem cells. Blood Rev. 2000; 14(4): 205-218. doi: 10.1054/blre.2000.0138.

7. Kucia M, Ratajczak J, Reca R, JanowskaWieczorek A, Ratajczak MZ. Tissue-specific muscle, neural and liver stem/progenitor cells reside in the bone marrow, respond to an SDF-1 gradient and are mobilized into peripheral blood during stress and tissue injury. Blood Cells Mol Dis. 2004; 32(1): 52-57. doi: 10.1016/j.bcmd.2003.09.025.

8. Haynesworth SE, Baber MA, Caplan AI. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone. 1992; 13(1): 69-80. doi:10.1016/8756-3282(92)90363-2.

9. Mito M, Kusano M, Kawaura Y. Hepatocyte transplantation in man. Transplant. Proc. 1992; 24: 3052.

10. Akino K, Mineda T, Akita S. Early cellular changes of human mesenchymal stem cells and their interaction with other cells. Wound Repair Regen. 2005; 13(4): 434-440. doi: 10.1111/j.1067-1927.2005.130411.x.

11. Raper SE, Grossman M, Rader DJ, et al. Safety and feasibility of liver directed ex vivo gene therapy for homozygous familial hypercholesterolemia. Ann. Surg. 1996; 223: 116.

12. Prichard HL, Reichert W, Klitzman B. IFATS collection: Adipose-derived stromal cells improve the foreign body response. Stem Cells. 2008; 26(10): 2691-2695. doi:10.1634/stemcells.2008-0140.

13. Kilroy GE, Foster SJ, Wu X, et al. Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. J Cell Physiol. 2007; 212(3): 702-709. doi:10.1002/jcp.21068.

14. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8(4): 315-317. doi:10.1080/14653240600855905.

15. Ichioka S, Kouraba S, Sekiya N, Ohura N, Nakatsuka T. Bone marrow-impregnated collagen matrix for wound healing: experimental evaluation in a microcirculatory model of angiogenesis, and clinical experience. Br J Plast Surg. 2005; 58(8): 1124-1130. doi: 10.1016/j.bjps.2005.04.054.

16. Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N. Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng. 2007; 13(6): 1299-1312. doi: 10.1089/ten.2006.0278.

17. Rasulov MF. Ispol'zovaniye mezenkhimal'nykh stvolovykh kletok kostnogo mozga i embrional'nykh fibroblastov v lechenii ozhogovykh ran. Pacific medical journal. 2004; 1: 7-9. (In Russ).

18. Li JY, Ren KK, Zhang WJ, et al. Human amniotic mesenchymal stem cells and their paracrine factors promote wound healing by inhibiting heat stress-induced skin cell apoptosis and enhancing their proliferation through activating PI3K/AKT signaling pathway. Stem Cell Res Ther. 2019; 10(1): 247. Published 2019 Aug 9. doi:10.1186/s13287-019-1366-y.

19. Francis E, Kearney L, Clover J. The effects of stem cells on burn wounds: a review. Int J Burns Trauma. 2019 Feb 15; 9(1): 1-12. PMID: 30911430; PMCID: PMC6420705.

20. Yoshikawa T, Mitsuno H, Nonaka I, Sen Y, Kawanishi K, Inada Y, Takakura Y, Okuchi K, Nonomura A. Wound therapy by marrow mesenchymal cell transplantation. Plast Reconstr Surg. 2008; 121(3): 860-877. doi: 10.1097/01.prs.0000299922.96006.24.

21. Lee HC, An SG, Lee HW, et al. Safety and effect of adipose tissue-derived stem cell implantation in patients with critical limb ischemia: a pilot study. Circ J. 2012; 76(7): 1750-1760. doi:10.1253/circj.cj-11-1135.

22. Marino G, Moraci M, Armenia E, et al. Therapy with autologous adipose-derived regenerative cells for the care of chronic ulcer of lower limbs in patients with peripheral arterial disease. J Surg Res. 2013; 185(1): 36-44. doi: 10.1016/j.jss.2013.05.024.

23. Kolesnikova IA. Mezenkhimal'nyye (stromal'nyye) stvolovyye kletki kostnogo mozga cheloveka v meditsinskoy praktike: obosnovaniye, rezul'taty i perspektivy. Hematol. and transfusiol. 2008; 53(5): 36-39. (In Russ).

24. Tsyb AF, Konoplyannikov AG, Kolesnikova AI, Pavlov VV. Polucheniye i ispol'zovaniye v meditsine kletochnykh kul'tur iz mezenkhimal'nykh stvolovykh kletok kostnogo mozga cheloveka. Bulletin of the Russian Academy of Medical Sciences. 2004; 9: 71-76. (In Russ).

25. Kotenko KV, Yeremin II, Moroz BB, et al. Kletochnyye tekhnologii v lechenii radiatsionnykh ozhogov: opyt FMBTS im. A.I. Burnazyana. Genes and cells. 2012; 2: 97-102. (In Russ).

26. Chattopadhyay S, Raines RT. Review collagen-based biomaterials for wound healing. Biopolymers. 2014;101(8):821-833. doi:10.1002/bip.22486

27. Ma J, Wang H, He B, Chen J. A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts. Biomaterials. 2001; 22(4): 331-336. doi:10.1016/s0142-9612(00)00188-5.

28. Baxter RM, Dai T, Kimball J, et al. Chitosan dressing promotes healing in third degree burns in mice: gene expression analysis shows biphasic effects for rapid tissue regeneration and decreased fibrotic signaling. J Biomed Mater Res A. 2013; 101(2): 340-348. doi:10.1002/jbm.a.34328.

29. Madihally SV, Matthew HW. Porous chitosan scaffolds for tissue engineering. Biomaterials. 1999; 20(12): 1133-1142. doi:10.1016/s0142-9612(99)00011-3.

30. Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T. Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res. 2006; 133(2): 185-192. doi:10.1016/j.jss.2005.12.013.

31. Croisier F, Jérôme C, Chitosan-based biomaterials for tissue engineering. European Polymer Journal. 2013; 49(4): 780-792.

32. Park S, Bhang SH, La WG, Seo J, Kim BS, Char K. Dual roles of hyaluronic acids in multilayer films capturing nanocarriers for drug-eluting coatings. Biomaterials. 2012; 33(21): 5468-5477. doi: 10.1016/j.biomaterials.2012.04.005.

33. Harris PA, di Francesco F, Barisoni D, Leigh IM, Navsaria HA. Use of hyaluronic acid and cultured autologous keratinocytes and fibroblasts in extensive burns. Lancet. 1999; 353(9146):35-36. doi: 10.1016/s0140-6736(05)74873-x.

34. Zinov'yev YeV, Yudin VYe, Asadulayev MS, et al. Opyt primeneniya stvolovykh kletok pri lechenii ozhogov kozhi. Pediatrician. 2018; 9(4): 12-27 (In Russ). doi: 10.17816/PED9412-27.

35. Gordiyenko VA, Shabunin AS, Davletova LA, et al. Mikroautodermoplastiki v sochetanii s adipogennymi mezenkhimal'nymi stvolovymi kletkami i ranevymi pokrytiyami. Forcipe. 2020; 2: 426. (In Russ).

36. Zinov'yev YeV, Kraynyukov PYe, Asadulayev MS, et al. Klinicheskaya otsenka effektivnosti primeneniya mezenkhimal'nykh stvolovykh kletok pri termicheskikh ozhogakh. Vestnik Natsional'nogo mediko-khirurgicheskogo tsentra im. N.I. Pirogova. 2018; 13(4): 62-67. (In Russ). doi 10.25881/BPNMSC.2018.88.91.011.

37. Gutierrez-Aranda I, Ramos-Mejia V, Bueno C, et al. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells. 2010; 28(9): 1568-1570. doi: 10.1002/stem.471.

38. Gerami-Naini B, Smith A, Maione AG, et al. Generation of Induced Pluripotent Stem Cells from Diabetic Foot Ulcer Fibroblasts Using a Nonintegrative Sendai Virus. Cell Reprogram. 2016; 18(4): 214-223. doi: 0.1089/cell.2015.0087.

39. Gutierrez-Aranda I, Ramos-Mejia V, Bueno C, et al. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells. 2010; 28(9): 1568-1570. doi: 10.1002/stem.471.

40. Prokhorova TA, Harkness LM, Frandsen U, et al. Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of Matrigel. Stem Cells Dev. 2009; 18(1): 47-54. doi: 10.1089/scd.2007.0266.

41. Gorecka J, Kostiuk V, Fereydooni A, et al. The potential and limitations of induced pluripotent stem cells to achieve wound healing. Stem Cell Res Ther. 2019; 10(1): 87. Published 2019 Mar 12. doi: 10.1186/s13287-019-1185-1.

For citation

Krainyukov P.E., Artsimovich I.V., Zinoviev E.V., Gostimskiy A.V., Kostyakov D.V., Kokorin V.V., Vahaev D.S. Using cell technologies in treatment of different etiology wounds. Bulletin of Pirogov National Medical & Surgical Center. 2021;16(2):132-137. (In Russ.)