DOI: 10.25881/BPNMSC.2018.88.91.011

Authors

Zinovev E.V.1, Krajnyukov P.E.2, Asadulaev M.S.1, Kostyakov D.V.1, Vagner D.O.1, Krylov P.K.1, Osmanov K.F.1

1. Saint-Petersburg I.I. Dzhanelidze Research Institute of Emergency Medicine, Saint-Petersburg.

2. Mandryka Central Military Clinical Hospital, Moscow.

Abstract

This is the results of clinical studies of the use of allogeneic adipogenic mesenchymal stem cells (AMSC) in the treatment of skin burns II – III degree (ICD-10). Clinical evaluation of the efficacy of biomedical cell products with stem cells CCCRTM (topical gel) and MMSC ™ (for injection) demonstrates their ability to optimize reparative regeneration in the area of burn injuries. The application of the gel with AMSC reduces the duration of epithelialization period of borderline (dermal) burn lesions by 2.2–2.4 times, wherein the final healing period of such wounds shortened by 2 times (p <0.01), and the incidence of purulent inflammation - 4 times (p <0.05). The infusion of AMSC suspension into a deep burn zone increases the frequency of engraftment of split skin grafts, stimulates angiogenesis and proliferation of fibroblasts in the superficial and deep layers of the dermis. The average level of perfusion and the standard deviation of the amplitude of blood flow oscillations in the area of stem cell injection are 2 times higher than those in other areas (donor area, healthy skin areas). By the 7th day of AMSC injection, the expression of proliferation markers of epithelial and connective tissue cell lines increased to 460% compared with the norm (p <0.05), and the expression of programmed cell death markers (apoptosis) is not detected.

Keywords: skin burns, results, wound regeneration, skin restoration, mesenchymal stem cells.

References

1. Akanov ZH.A. Perspektivy primeneniya stvolovyh kletochnyh tekhnologij v medicine. Medicina i ehkologiya. 2010:2(55). Dostupen po: https://cyberleninka.ru/article/n/perspektivy-primeneniya-stvolovyh-kletochnyh-tehnologiy-v-meditsine).

2. Alekseev A.A. Organizaciya medicinskoj pomoshchi postradavshim ot ozhogov v rossijskoj federacii. Sbornik tezisov IX s"ezda travmatologov-ortopedov Rossii. Saratov, 2010. C. 15-16.

3. Alekseeva I.S., Volkov A.V., Kulakov A.A. [i dr.] Kliniko-ehksperimental'noe obosnovanie ispol'zovaniya kombinirovannogo kletochnogo transplantata na osnove mul'tipotentnyh mezenhimnyh stromal'nyh kletok zhirovoj tkani u pacientov s vyrazhennym deficitom kostnoj tkani chelyustej. Geny i kletki. 2012:1. Dostupen po: https://cyberleninka.ru/article/n/kliniko-eksperimentalnoe-obosnovanie-ispolzovaniya-kombinirovannogo-kletochnogo-transplantata-na-osnove-multipotentnyh-mezenhimnyh.

4. Baranov E.V., Tret'yak S.I., Vasilevich I.B. [i dr.] Klinicheskie vozmozhnosti primeneniya autogennyh mul'tipotentnyh mezenhimnyh stromal'nyh kletok zhirovoj tkani pri lechenii pacientov s troficheskimi yazvami nizhnih konechnostej. Geny i kletki. 2013:2. Dostupen po: https://cyberleninka.ru/article/n/klinicheskie-vozmozhnosti-primeneniya-autogennyh-multipotentnyh-mezenhimnyh-stromalnyh-kletok-zhirovoy-tkani-pri-lechenii-patsientov).

5. Bondarenko N.A., Lykov A.P., Kazakov O.V. [i dr.] Izmeneniya funkcional'nyh svojstv mezenhimal'nyh stvolovyh kletok pod vliyaniem ehritropoehtina. Sovremennye problemy nauki i obrazovaniya. 2017:6. Dostupen po: https://science-education.ru/ru/article/view?id=27257.

6. Bryuhoveckij I.S., Bryuhoveckij A.S., Mishchenko P.V. [i dr.] Rol' sistemnyh mekhanizmov migracii i houminga stvolovyh kletok v razvitii zlokachestvennyh opuholej central'noj nervnoj sistemy i razrabotke novyh metodov protivoopuholevoj terapii. Rossijskij bioterapevticheskij zhurnal. 2013:4. Dostupen po: https://cyberleninka.ru/article/n/rol-sistemnyh-mehanizmov-migratsii-i-houminga-stvolovyh-kletok-v-razvitii-zlokachestvennyh-opuholey-tsentralnoy-nervnoy-sistemy-i.

7. Vengerovich N.G., Hripunov A.K., Ruzanova EH.A. [i dr.] Regenerativnaya terapiya tkanevymi protektornymi citokinami v sostave ranevyh pokrytij na osnove bakterial'noj cellyulozy. Vestnik Sankt-Peterburgskogo universiteta. 2016;11(1): 36-46.

8. Zinov'ev E.V., Cygan V.N., Asadulaev M.S. [i dr.] EHksperimental'naya ocenka ehffektivnosti primeneniya adipogennyh mezenhimal'nyh stvolovyh kletok dlya lecheniya ozhogov kozhi III stepeni. Vestnik Rossijskoj Voenno-medicinskoj akademii. 2017;1(57):137-141.

9. Kiseleva E.P., Gain M.YU. EHffektivnost' primeneniya mezenhimal'nyh stvolovyh kletok zhirovoj tkani v vosstanovlenii defektov kozhi v ehksperimente. Vestnik Nacional'noj akademii nauk Belorussii. Seriya medicinskih nauk. 2013:2:75-81.

10. Nikol'skij N.N., Gabaj I.A., Somova N.V. EHmbrional'nye stvolovye kletki cheloveka. Problemy i perspektivy. Citologiya. 2007:48:7:529-537.

11. Podojnicyna M.G., Cepelev V.L. Stepanov A.V. Primenenie fizicheskih metodov pri lechenii ozhogov. Sovremennye problemy nauki i obrazovaniya. 2015:5(363). Dostupen po: https://science-education.ru/ru/article/view?id=22156.

12. Bassi E.J. Immune regulatory properties of allogeneic adipose-derived mesenchymal stem cells in the treatment of experimental autoimmune diabetes. Diabetes. 2012;61(10):2534-45.

13. Cavallari G. Mesenchymal stem cells and islet cotransplantation in diabetic rats: improved islet graft revascularization and function by human adipose tissue-derived stem cells preconditioned with natural molecules. Cell Transplant. 2012;21(12):2771-81.

14. Cui L. Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2. Tissue Eng. 2007;13(6):1185-95.

15. Gimble J.M., Katz A.J., Bunnell B.A. Adipose-derived stem cells for regenerative medicine. Circ. Res. 2007;100(9):1249-60.

16. Gonzalez-Rey E., Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Ann. Rheum. Dis. 2010;69(1):241-8.

17. Kang Y. Unsorted human adipose tissue-derived stem cells promote angiogenesis and myogenesis in murine ischemic hindlimb model. Microvasc. Res. 2010;80(3):310-6.

18. Kim Y. Direct comparison of human mesenchymal stem cells derived from adipose tis- sues and bone marrow in mediating neovascularization in response to vascular ischemia. Cell. Physiol. Biochem. 2007;20(6):867-76.

19. Kucerova L. Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer. Res. 2007;67(13):6304-13.

20. Kuo Y.R. Modulation of immune response and T-cell regulation by donor adipose- derived stem cells in a rodent hind-limb allotransplant model. Plast. Reconstr. Surg. 2011; 128(6):661-72.

21. Meza-Zepeda L.A. High-resolution analysis of genetic stability of human adipose tissue stem cells cultured to senescence. J. Cell Mol. Med. 2008;12(2):553-63.

22. Mitchell J.B. Immunophenotype of human adipose-derived cells: temporal changes instromal-associated and stem cell-associated markers. Stem Cells. 2006;24(2):376-85.

23. Muehlberg F.L. Tissue-resident stem cells promote breast cancer growth and metastasis. Carcinogenesis. 2009;30(4):589-97.

24. Nagwa E. Stem Cell Biology and Regenerative Medicine. Advances in stemcelltherapy. Spring erinternational publishing. 2017;11(1): 765-69.

25. Niemeyer P. Survival of human mesenchymal stromal cells from bone marrow and adipose tissue after xenogenic transplantation in immunocompetent mice. Cytotherapy. 2008;10(8):784-95.

26. Pittenger M.F. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143-7.

27. Planat-Benard V. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation. 2004;109(5):656-63.

28. Puissant B. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br. J. Haematol. 2005; 129(1):118-29.

29. Safford K.M. Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem. Biophys. Res. Commun. 2002;294(2):371-9.

30. Seo M.J. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem. Biophys. Res. Commun. 2005;328(1):258-64.

31. Timper K. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem. Biophys. Res. Commun. 2006; 341(4):1135-40.

32. Tse W.T. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation. 2003; 75(3):389-97.

33. Yanez R. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells. 2006;24(11):2582-91.

34. Zhu X. The comparison of biological characteristics and multilineage differentiation of bone marrow and adipose derived Mesenchymal stem cells. Cell Tissue Res. 2012;350(2): 277-87.

35. Zuk P.A. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell. 2002;13(12):4279-95.

36. Zuk P.A. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211-28.

For citation

Zinovev E.V., Krajnyukov P.E., Asadulaev M.S., Kostyakov D.V., Vagner D.O., Krylov P.K., Osmanov K.F. Clinical assessment of the efficiency of the use of mesenchimal stem cells in thermal burns. Bulletin of Pirogov National Medical & Surgical Center. 2018;13(4):62-67. (In Russ.) https://doi.org/10.25881/BPNMSC.2018.88.91.011